
	[image: image1.png]

	oneM2M
Technical Report

	Document Number
	TR-0060-V-0.2.0

	Document Name:
	Study of action triggering enhancements

	Date:
	2020-02-13

	Abstract:
	This work item defines how to autonomously send a series of commands to trigger actions based on the configuration of conditions by M2M application. As the extension to the previous work TR-0021, this TR focuses on Complex Event Processing support in oneM2M.

	'Template Version: January 2019 (do not modify)

The present document is provided for future development work within oneM2M only. The Partners accept no liability for any use of this report.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2019, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC).

All rights reserved.
The copyright and the foregoing restriction extend to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
4
2
References
4
2.1
Normative references
4
2.2
Informative references
4
3
Definition of terms, symbols and abbreviations
4
3.1
Terms
4
3.2
Symbols
5
3.3
Abbreviations
5
4
Conventions,
5
5
Study of event processing technologies
5
5.1
Introduction
5
5.2
Tech-x
5
6
CEP use cases
6
7
Candidate solutions
9
7.1
CEP concepts in oneM2M
9
7.2
Solution 1: State and Sequencing for Action Triggering
9
8
Architecture considerations
13
8.1
Introduction
13
8.2
Integration of CEP engine
13
8.3
Interworking of CEP engine
13
Proforma copyright release text block
13
Annexes
14
Annex <y>: Bibliography
14
History
15

1
Scope

The present document …
EXAMPLE:
The present document provides the necessary adaptions to the endorsed document.

The Scope shall not contain requirements.

2
References

The following text block applies.

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

As a Technical Report (TR) is entirely informative it shall not list normative references.
The following referenced documents are necessary for the application of the present document.
Not applicable.

2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
oneM2M Drafting Rules (http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc)
3
Definition of terms, symbols and abbreviations

Delete from the above heading the word(s) which is/are not applicable.
3.1
Terms
Clause numbering depends on applicability.

· A definition shall not take the form of, or contain, a requirement.

· The form of a definition shall be such that it can replace the term in context. Additional information shall be given only in the form of examples or notes (see below).

· The terms and definitions shall be presented in alphabetical order.
For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply:

Definition format

<defined term>: <definition>

If a definition is taken from an external source, use the format below where [N] identifies the external document which must be listed in Section 2 References.
<defined term>[N]: <definition>

example 1: text used to clarify abstract rules by applying them literally

NOTE:
This may contain additional information.

3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations

Abbreviations should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Abbreviation format

<ABBREVIATION1>
<Explanation>

<ABBREVIATION2>
<Explanation>

<ABBREVIATION3>
<Explanation>

4
Conventions,

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5
Study of event processing technologies
<Text>

5.1
Introduction
<Text>

5.2
Tech-x

<Text>

6
CEP use cases
6.1 Action Sequencing and Process Management

6.1.1 Description

A manufacturing production process usually involves multiple steps and numerous variables. An IoT system can be used to monitor and control the various “things” in the system and automate the production process. Sensors can be utilized to measure parameters (e.g., temperature, pH, volume) while commands can be sent to actuators (e.g., switch, pump, motor). In the automated process, an operation/action can be triggered when a certain event happens or some condition is met. For example, the heater will be turned on if the temperature of materials in the tank drops below a threshold; after the temperature rises back to the desired value/range, the heater will be turned off. Another example is, if an overheated motor is detected, the production line will be paused; if after a certain amount of time the overheating is still present, an alert will be sent out.

In some cases, which action should be taken after an event happens depends on the current system state and conditions. For example, the same event of “pH value drops below 3” may trigger either the action of “adding cold water” or “adding hot water”, depending on whether the system is in heating state or reaction state. After the first hour of cooling, if the temperature has dropped below threshold, then the process may proceed to filtering, otherwise, a second cooler will be turned on to expedite the cooling. In addition, the trigger of an action does not have to be monitored during the entire process, if the action can only take place in some certain state(s). For example, the system only needs to monitor the pH value during heating and reaction phase, after the reaction phase, the pH level is not of concern.

The production process usually consists of multiple stages or states, and the transitions among states are driven by various events and the corresponding actions. The sequence of actions and states are indeterminate at the beginning of the process, since which action will be taken next usually depends on the result of previous action(s). For example, whether there will be an extra cooling stage depends on whether the first cooler has successfully reduced the temperature below threshold. Moreover, the process may need to be paused or updated during the operation. For example, the process should be paused or terminated if hazard is detected, and then resumed or restarted after the hazard is removed. When the system is operating in the cooling state, a second filtering stage could be added without interrupting the current operation. As a result, for the action sequencing in process control, state and process level management mechanisms are required to handle the interconnections between actions and states, as well as the dynamics during the process.

6.1.2 Source

N/A
6.1.3 Actors

· IoT Requestor: sends out a request to the action sequencing manager to enable the management of actions and state transitions for automatic process control.

· IoT devices: including sensors that are used to monitor events and conditions in the production process, and actuators that are used to take actions during the process.

· Action Sequencing Manager: performs action sequencing management in the process control. The manager’s functionalities include taking inputs from IoT entities, managing the resources associated with the process, carrying out actions, sending commands to devices, monitoring status and conditions, managing state transitions, and updating states and actions.

6.1.4 Pre-conditions

An automatic control system is deployed for continuous production processes, where operations will be performed automatically based on observation of certain events or conditions. The production process may be abstracted as a finite-state machine.

6.1.5 Triggers

A request for automatic process control, or an update of an existing production process.

6.1.6. Normal Flow

Figure 6.1.6-1 illustrates the high-level flows of action sequencing management in process control use case, which consists of the following steps:

· Step 1: The IoT Requestor sends a request to the Action Sequencing Manager to enable or update the process control by specifying/updating required parameters (such as description of states and transition conditions).

· Step 2: The Action Sequencing Manager processes the request and performs necessary validations.

· Step 3: Based on the request, the Action Sequencing Manger verifies the access to related IoT devices, such as checking reachability, and creating subscription.

· Step 4: If the request received in Step 1 is an update request, the Action Sequencing Manager first evaluates if the update can be made without impacting operations, if so, the information related to this process is updated.

· Step 5: If the Verification procedure in Step 4 or Update procedure in Step 5 is successful, the corresponding resource will be created/updated.

· Step 6: A response is generated and sent to the IoT Requestor.

[image: image2.emf]Action Sequencing Manager1. Request2. Process requestIoT Requestor5. Create/update resource6. Response 4.UpdateIoT Devices (in IoT System)3. Verification

Figure 6.1.6-1. Normal Flow – Action sequencing management

6.1.7 Alternative flow

N/A

6.1.8 Post-conditions

N/A

6.1.9 High Level Illustration

[image: image3.png]
Figure 6.1.9-1 High Level Illustration – Action sequencing in process control

6.1.10 Potential requirements

1. The oneM2M System shall support the capability for a requestor to configure a set of states with transition conditions and actions.

2. The oneM2M System shall monitor the trigger conditions of a configured set of states to determine if/when to transition between states and perform corresponding actions.

3. The oneM2M System shall perform transitions between states defined within a set and perform corresponding operations defined for that state.
Editor’s Note: To define CEP utilizing use cases in this TR. Possibly later transfer/copy into TR-0001.
7
Candidate solutions

7.1
CEP concepts in oneM2M

Editor’s Note: Detailed conceptual design what Complex Event Processing in oneM2M system, to elicit candidate solutions.

7.2 Solution 1: State and Sequencing for Action Triggering
7.2.1 New Resource Type: <state>
An IoT process usually consists of multiple stages or states, and the transitions among the states are driven by various events and the corresponding actions. The <state> resource is proposed to store the information about the IoT process, and to monitor the status of the IoT process and define the actions and transitions in this IoT process.

[image: image4.emf]currentStatus: active/inactivestateActionsstateTransitions{[transition criteria, next state]}<state><action>: action1

Figure 7.2.1-1: Resource structure of <state>

Table 7.2.1-1: Attributes of <state> resource

	Attributes of
<state>
	Multiplicity
	RW/

RO/

WO
	Description

	currentStatus
	1
	RO
	The indicator of whether this state is currently active. This attribute may take values from “active” or “inactive”.

	stateActions
	0..1 (L)
	RW
	The link(s) to the <action> resource(s) that may be performed in this state. The actions include both the ones that will be performed unconditionally when entering this state, and the ones that may be triggered by certain events/conditions within this state.

	stateTransitions
	0..1 (L)
	RW
	The possible transition(s) that may happen from the current state. Each transition is defined as a tuple [transition criteria, next state]:

Transition criteria: the event or condition that may trigger state transition; the transition criteria could be defined in a similar way as evalCriteria.

Next state: the resourceID of the next <state> resource to transition to.

If this state is the last state in the process, this attribute will be empty.

Once an IoT process transitions to a given state, the value of the currentStatus attribute of the given <state> resource will be changed to “active”. Then, for all the <action> resources that are linked through the stateActions attribute, their evalMode attributes will be changed from “off” to “once”. For an unconditional action, the Hosting CSE will perform the action immediately. For a conditional action, the Hosting CSE will monitor the evalCriteria attribute of each <action> resource to determine if/when the action will be performed. In addition, the Hosting CSE will start to monitor the transition criteria defined in the stateTransitions attribute of the <state> resource. If/when any of the events/conditions defined in the stateTransitions are met, the Hosting CSE will trigger a state transition. When performing a state transition, the currentStatus attribute of the current <state> resource will be changed to “inactive” and all the evalMode attributes of the <action> resources referenced by the current <state> resource will be changed back to “off”. The Hosting CSE will then transition to the next state as indicated by the resource identifier of the next state’s <state> resource defined in the stateTransitions attribute of the current state’s <state> resource.

7.2.2 New Resource Type: <processManagement>
The <processManagement> resource is proposed to store the information of the entire process consisting of multiple states.

[image: image5.emf]<processManagement>processStatuscurrentStatepreconditionsinitialStatefinalStateexitConditions<state>: state1processControl

Figure 7.2.2-1: Resource structure of <processManagement>

Table 7.2.2-1: Child Resources of Proposed oneM2M <processManagement> Resource
	Child Resources of <processManagement>
	Child Resource Type
	Multiplicity
	Description

	[variable]
	<state>
	0..n
	This resource describes the details of a particular state of an IoT process.

	[variable]
	<subscription>
	0..n
	See clause 9.6.8 in [x].

Table 7.2.2-2: Attributes of <processManagement> resource

	Attributes of
<processManagement>
	Multiplicity
	RW/

RO/

WO
	Description

	processStatus
	1
	RO
	The status for the entire IoT process. The supported values for this attribute are:

Disabled: The IoT process is disabled.

Enabled: The IoT process is enabled, and the Hosting CSE will monitor the event/condition defined in the preconditions attribute. If the Hosting CSE detects that the preconditions are met, the Hosting CSE will update the processStatus attribute to “Active”.

Active: The IoT process is active (“running”).

Paused: The IoT process is paused and will remain in the current state until “Active” again or the exitConditions are met. .

Ended: The IoT process has entered the final state or exited through exitConditions.

When the processStatus is “Enabled”, “Paused” or “Ended”, the Hosting shall allow child <state> resources to be added, modified of deleted from the process. Otherwise, the Hosting CSE will reject requests to add, modify or delete <state> resources from the process.

	processControl
	1
	RW
	This attribute is used to control and set the status of the process. The supported values for the attribute are:

Enable: The Hosting CSE will update processStatus to “Enabled”.

Disable: The Hosting CSE will update processStatus to “Disabled”.

Activate: The Hosting CSE will update processStatus to “Active”.

Pause: The Hosting CSE will update processStatus to “Paused”.

End: The Hosting CSE will update processStatus to “Ended”.

The <processManagement> resource shall be created with this attribute set to “Disable”.

	currentState
	1
	RO
	The resourceID of the child <state> resource that has currentStatus set to active. If the processStatus is not “Active”, the value of this attribute will be empty.

	preconditions
	0..1 (L)
	RW
	This attribute specifies any conditions that must be met for the process to begin. This attribute could be defined in a similar way as evalCriteria. It can be used to trigger the start of the IoT process. When the conditions are met, the Hosting CSE will update processStatus to “Active”, and the Hosting CSE will set currentState to the value defined in initialState. The Hosting CSE will also change the currentStatus of the <state> resource indicated by initialState to “Active”.

	exitConditions
	0..1 (L)
	RW
	This attribute specifies what events can end the IoT process. This attribute could be defined in a similar way as evalCriteria. It allows for an asynchronous exit of the process from any state. When the exit conditions are detected by the Hosting CSE, the Hosting CSE will set processStatus to “Ended” and set the status of all child <state> resources to “inactive”.

	initialState
	1
	RW
	The resourceID of the first <state> resource of the process.

	finalState
	0..1
	RW
	The resourceID of the last <state> resource in the process. If the process is a loop, this attribute is empty. Before the Hosting CSE updates the currentState attribute, it checks to see if the current value of currentState matches the value of finalState. If so the Hosting CSE updates processStatus to “Ended”.

7.2.3 State and Process Management
7.2.3.1 Introduction

This clause describes the procedure for managing oneM2M state and process in action triggering via the <state> and <processManagement> resources.

7.2.3.2 Process Management Procedure

This clause describes the procedure a Hosting CSE performs to manage an IoT process.

Step 1:
An AE creates a <processManagement> resource.

Step 2:
An AE creates all the <action> resources that are involved in the IoT process and state transitions.

Step 3:
An AE creates all the <state> resources that are involved in the IoT process as child resources of <processManagement>.

Step 4:
An AE enables the <processManagement> by updating the value of processControl to “Enable”. The Hosting CSE will update the value of processStatus to “Enabled”. The Hosting CSE will start to monitor the event/condition defined in preconditions and exitConditions.

Step 5:
If/when the event/condition defined in preconditions is detected, the Hosting CSE sets the processStatus to “Active”. If preconditions is empty, the process can be manually activated by setting the value of processControl to “Activate” and the Hosting CSE will set the processStatus to “Active”. The Hosting CSE sets the currentState to the value in initialState.

Step 6:
Starting from the initialState, whenever a transition happens, the currentState attribute is updated to the resourceID of the next <state> by the Hosting CSE. The <state> resource corresponding to the current state and cannot be modified, only RETRIEVE operation is allowed.

Step 7:
If an AE updates processControl to “Pause” the Hosting CSE will change the processStatus to “Paused”. The paused IoT process will not transition to another state until processControl is updated to “Activate” or the exitConditions are met.

Step 8:
If an AE updates processControl to “Disable” the Hosting CSE will change processStatus to “Disabled”. The Hosting CSE will set the currentStatus of all child <state> resources to “inactive”.

Step 9:
If/when the event/condition defined in exitConditions is detected, the Hosting CSE will set processStatus to “Ended”. The Hosting CSE will set the currentStatus of all child <state> resources to “inactive”. The Hosting CSE will set currentState to empty.
Step 10:
If the currentState transitions to the value of finalState, the processStatus will be set to “Ended” by the Hosting CSE. The Hosting CSE will set the currentStatus of all child <state> resources to “inactive”. The Hosting CSE will set currentState to empty.
7.2.3.3 State Transition Procedure

This clause describes the procedure a Hosting CSE performs to manage an IoT process that has been “Enabled”.

Step 1:
<state> resources are created as child resources of the <processManagement> resource.

Step 2:
The IoT process enters a new state, e.g. after a state transition, or a process is initialized when the pre-conditions are met.

Step 3:
The Hosting CSE sets the value of the currentStatus attribute of the <state> indicated in currentState to “active”.

Step 4:
When a <state> is activated the Hosting CSE shall monitor the stateActions. The Hosting CSE shall set the evalMode attribute of all the <actions> indicated in stateActions attribute to “once”.

For an <action> that has evalCriteria attribute that is empty (an unconditional action) it will be performed immediately.

For a conditional action, the Hosting CSE will check the evalCriteria attribute of the <action> to determine whether the action will be triggered or not.

Step 5:
The Hosting CSE will start to monitor the conditions specified in stateTransitions.

Step 6:
If one of the events or conditions defined in stateTransitions is detected by the Hosting CSE, the Hosting CSE shall update the currentState of the <processManagement>.

Step 7:
If/when the value of the currentStatus attribute is set to “inactive” by the Hosting CSE.

Step 8:
For all the state specific <actions> that are linked through the stateActions attribute, their evalMode attributes are changed to “off” by the Hosting CSE.

Step 9:
The Hosting CSE transitions to the next state as indicated by the next state ID.

Editor’s Note: Candidate solution with resource types and so on.

8
Architecture considerations
8.1
Introduction
Editor’s Note: This clause investigates how to support CEP functionality in oneM2M platform whether as integration or interworking. This would be important aspect especially for implementation.
8.2
Integration of CEP engine
8.3
Interworking of CEP engine

The following text is to be used when appropriate:

Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, oneM2M grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

<PAGE BREAK>

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex <A>:
Title of annex (style H9)
<Text>

<PAGE BREAK>

Annex :
Title of annex (style H9)
<Text>

B.1
First clause of the annex (style H1)
<Text>

B.1.1
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself.

It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Publication history

	V1.1.1
	<yyyy-mm-dd>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V0.0.1
	2019-02-11
	Skeleton

	V0.1.0
	2019-09-16
	Incorporates the agreed contribution at SDS#40 meeting:
- SDS-2019-0221R03-TR-0060_state_and_sequencing_Use_Case

	V0.2.0
	2020-02-13
	Incorporates the agreed contribution at SDS#43 meeting:
- SDS-2019-0549R04-TR-0060_process_management_potential_solution

	
	
	

	
	
	

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)
Page 6 of 11
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

currentStatus: active/inactive
stateActions
stateTransitions
{[transition criteria, next state]}
<state>

<action>: action1

<processManagement>
processStatus
currentState
preconditions
initialState
finalState
exitConditions
<state>: state1
processControl

