	[image: C:\Users\grayv\Desktop\oneM2M-Logo.gif]








	ONEM2M
TECHNICAL REPORT

	Document Number
	oneM2M-TR-0053-V-0.56.0

	Document Name:
	Lightweight oneM2M Services

	Date:
	202019-0310-0423

	Abstract:
	The document is a study of lightweight oneM2M services. Based on the result of the study, it identifies proposed optimizations and enhancements to the oneM2M system to streamline and optimize its features and services.  

	Template Version: January 2017 (Do not modify)







The present document is provided for future development work within oneM2M only. The Partners accept no liability for any use of this report.
The present document has not been subject to any approval process by the oneM2M Partners Type 1.  Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.



About oneM2M 
The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide. 
More information about oneM2M may be found at:  http//www.oneM2M.org
Copyright Notification
© 2017, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC).
All rights reserved.
The copyright and the foregoing restriction extend to reproduction in all media.

Notice of Disclaimer & Limitation of Liability 
The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied. 
NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.



[bookmark: GSBox]
[bookmark: page2]

[bookmark: _Toc488238691][bookmark: _Toc488240041][bookmark: _Toc489445741]
 
Contents
1	Scope	5
2	References	5
2.1	Normative references	5
2.2	Informative references	5
3	Definitions, symbols and abbreviations	5
3.1	Definitions	5
3.2	Symbols	6
3.3	Abbreviations	6
4	Conventions	6
5	Introduction	6
6	Analysis of oneM2M Functionality	6
6.1	Analysis of oneM2M Messages and Potential Requirement	6
6.1.1	Introduction of oneM2M Messages	7
6.1.2	Limitations of oneM2M Messages	8
6.1.3	Potential Requirements	11
6.1.4	Potential Solutions	11
6.1.4.1 Solution 1: Primitive Profile	11
6.1.4.1.1 Introduction	11
6.1.4.1.2 <primitiveProfile> Resource Definition	12
6.1.4.1.3 <primitiveProfile> Resource Provisioning	14
6.1.4.1.4 Applying a <primitiveProfile> Resource	14
[bookmark: _GoBack]6.1.4.2	Solution 2: Message Scripting Service	16
6.1.4.2.1	Definition of Message Scripting (MSC) CSF	16
6.1.4.2.2	New <scriptedRequest> Resource	16
6.1.4.2.3	Example Procedure for Scripted Requests	19
6.2	Analysis of oneM2M Requests Targeted Towards AEs	24
6.2.1  Introduction of oneM2M Requests Targeted Towards AEs	24
6.2.2  Limitations of oneM2M Requests Targeted Towards AEs	25
6.2.3  Potential Requirements	29
6.2.4	Potential Solutions	29
6.2.4.1 Solution 1: Retargetting via a New Attribute resourceMappingRules	29
6.2.4.1.1 Definition of a New Attribute resourceMappingRules	29
6.2.4.1.2 Retargeting Procedure based on a New Attribute resourceMappingRules	33
6.2.4.2 Solution 2: Access Control for Retargeting Requests to an AE	37
6.2.4.3 Solution 3: Using Subscription/Notification to Retarget RETRIEVE Requests	38
6.3	Analysis of oneM2M Subscription & Notification and Potential Requirement	40
6.3.1	Introduction of oneM2M Subscription & Notification	40
6.3.2	Limitations of oneM2M Subscription & Notification	41
6.3.3	Potential Requirements	42
6.3.4	Potential Solutions	43
6.3.4.1	Solution 1: Deferred Notification	43
6.3.4.1.1	Definition of a new attribute for subscription Resource	43
6.3.4.1.2	Example Procedure for Deferred Notification	43
6.3.4.2	Solution 2: Notification Recording	44
6.3.4.2.1	Introduction	44
6.3.4.2.2	Notification Recording Procedures	44
7	Conclusions	46
Annexes	46
History	47
1	Scope	4
2	References	4
2.1	Normative references	4
2.2	Informative references	4
3	Definitions, symbols and abbreviations	4
3.1	Definitions	4
3.2	Symbols	5
3.3	Abbreviations	5
4	Conventions	5
5	Introduction	5
6	Analysis of oneM2M Functionality	5
6.1	Analysis of oneM2M Messages and Potential Requirement	5
6.1.1	Introduction of oneM2M Messages	6
6.1.2	Limitations of oneM2M Messages	7
6.1.3	Potential Requirements	10
6.1.4	Potential Solutions	10
6.1.4.1 Solution 1: Primitive Profile	10
6.1.4.1.1 Introduction	10
6.1.4.1.2 <primitiveProfile> Resource Definition	11
6.1.4.1.3 <primitiveProfile> Resource Provisioning	13
6.1.4.1.4 Applying a <primitiveProfile> Resource	13
6.1.4.2	Solution 2: Message Scripting Service	15
6.1.4.2.1	Definition of Message Scripting (MSC) CSF	15
6.1.4.2.2	New <scriptedRequest> Resource	15
6.1.4.2.3	Example Procedure for Scripted Requests	18
6.2	Analysis of oneM2M Requests Targeted Towards AEs	23
6.2.1  Introduction of oneM2M Requests Targeted Towards AEs	23
6.2.2  Limitations of oneM2M Requests Targeted Towards AEs	24
6.2.3  Potential Requirements	28
6.2.4	Potential Solutions	28
6.2.4.1 Solution 1: Retargetting via a New Attribute resourceMappingRules	28
6.2.4.1.1 Definition of a New Attribute resourceMappingRules	28
6.2.4.1.2 Retargeting Procedure based on a New Attribute resourceMappingRules	32
6.2.4.2 Solution 2: Access Control for Retargeting Requests to an AE	36
6.2.4.3 Solution 3: Using Subscription/Notification to Retarget RETRIEVE Requests	37
6.3	Analysis of oneM2M Subscription & Notification and Potential Requirement	39
6.3.1	Introduction of oneM2M Subscription & Notification	39
6.3.2	Limitations of oneM2M Subscription & Notification	40
6.3.3	Potential Requirements	41
6.3.4	Potential Solutions	41
6.3.4.1	Solution 1: Deferred Notification	41
6.3.4.1.1	Definition of a new attribute for subscription Resource	41
6.3.4.1.2	Example Procedure for Deferred Notification	42
7	Conclusions	43
Annexes	43
History	44

1 [bookmark: _Toc300919384][bookmark: _Toc488238692][bookmark: _Toc488240042][bookmark: _Toc489445742][bookmark: _Toc489446031][bookmark: _Toc34210394]
Scope
[bookmark: _Toc300919385][bookmark: _Toc488238693][bookmark: _Toc488240043][bookmark: _Toc489445743][bookmark: _Toc489446032]This document is a study of lightweight oneM2M services. Based on the result of the study, it identifies proposed optimizations and enhancements to the oneM2M system to streamline and optimize its features and services.
2 [bookmark: _Toc34210395]References
[bookmark: _Toc300919386][bookmark: _Toc488238694][bookmark: _Toc488240044][bookmark: _Toc489445744][bookmark: _Toc489446033]The following text block applies. 
References are either specific (identified by date of publication and/or edition number or version number) or non- specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
2.1 [bookmark: _Toc34210396]Normative references
Normative references are not applicable in the present document.
2.2 [bookmark: _Toc489539998][bookmark: _Toc489880984][bookmark: _Toc489881387][bookmark: _Toc489881786][bookmark: _Toc490225309][bookmark: _Toc490225708][bookmark: _Toc489539999][bookmark: _Toc489880985][bookmark: _Toc489881388][bookmark: _Toc489881787][bookmark: _Toc490225310][bookmark: _Toc490225709][bookmark: _Toc300919387][bookmark: _Toc488238695][bookmark: _Toc488240045][bookmark: _Toc489445745][bookmark: _Toc489446034][bookmark: _Toc34210397]Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[bookmark: REF_ONEM2MDRAFTINGRULES][i.1]	oneM2M Drafting Rules.
NOTE:	Available at http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf.
3 [bookmark: _Toc300919388][bookmark: _Toc488238696][bookmark: _Toc488240046][bookmark: _Toc489445746][bookmark: _Toc489446035][bookmark: _Toc34210398]Definitions, symbols and abbreviations
Delete from the above heading the word(s) which is/are not applicable.
3.1 [bookmark: _Toc300919389][bookmark: _Toc488238697][bookmark: _Toc488240047][bookmark: _Toc489445747][bookmark: _Toc489446036][bookmark: _Toc34210399]Definitions
Clause numbering depends on applicability.
A definition shall not take the form of, or contain, a requirement. 
The form of a definition shall be such that it can replace the term in context. Additional information shall be given only in the form of examples or notes (see below). 
The terms and definitions shall be presented in alphabetical order. 
For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply:
Definition format
<defined term>: <definition>
If a definition is taken from an external source, use the format below where [N] identifies the external document which must be listed in Section 2 References.
<defined term>[N]: <definition>
example 1: text used to clarify abstract rules by applying them literally
NOTE:	This may contain additional information.
3.2 [bookmark: _Toc300919390][bookmark: _Toc488238698][bookmark: _Toc488240048][bookmark: _Toc489445748][bookmark: _Toc489446037][bookmark: _Toc34210400]Symbols
Clause numbering depends on applicability.
For the purposes of the present document, the [following] symbols [given in ... and the following] apply:
Symbol format
<symbol>	<Explanation>
<2nd symbol>	<2nd Explanation>
<3rd symbol>	<3rd Explanation>
3.3 [bookmark: _Toc300919391][bookmark: _Toc488238699][bookmark: _Toc488240049][bookmark: _Toc489445749][bookmark: _Toc489446038][bookmark: _Toc34210401]Abbreviations
[bookmark: _Toc488238700][bookmark: _Toc488240050][bookmark: _Toc489445750][bookmark: _Toc489446039][bookmark: _Toc300919392]For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:
Abbreviation format
<ABREVIATION1>	<Explanation>
<ABREVIATION2>	<Explanation>
<ABREVIATION3>	<Explanation>
4 [bookmark: _Toc34210402]Conventions
The key words "Shall", "Shall not", "May", "Need not", "Should", "Should not" in the present document are to be interpreted as described in the oneM2M Drafting Rules [i.1].

5 [bookmark: _Toc488238701][bookmark: _Toc488240051][bookmark: _Toc489445751][bookmark: _Toc489446040][bookmark: _Toc34210403]Introduction
Editor’s Note:  This section provides background information, including: 1) primary features of constrained IoT devices and constrained IoT access networks; 2) the challenges for supporting oneM2M service functions on constrained IoT devices; 3) the benefits of designing lightweight oneM2M services. 


6 [bookmark: _Toc34210404]Analysis of oneM2M Functionality 
6.1 [bookmark: _Toc488238912][bookmark: _Toc488240261][bookmark: _Toc489445961][bookmark: _Toc489446250][bookmark: _Toc34210405]Analysis of oneM2M Messages and Potential Requirement 

6.1.1 [bookmark: _Toc34210406]Introduction of oneM2M Messages
Figure 6.1.1-1 from oneM2M TS-0001 shows the general communication flow in oneM2M that governs the information exchange over Mca, Mcc, and Mcc’ reference points  (i.e. between an Application Entity (AE) and a Common Service Entity (CSE) or between two CSEs), which is based on the use of Request and Response messages. Such communications can be initiated either by the AEs or by the CSEs depending upon the operation in the Request message. For example, an AE can send a request message to a hosting CSE for application registration; then, the AE can send another request message to the hosting CSE to subscribe to certain resources; lastly, the hosting CSE may send request messages (i.e. notifications) to the AE when the status of subscribed-to resources has been changed.   


Figure 6.1.1-1: General Flow in oneM2M
oneM2M provides several advanced features for processing a request message and generating a corresponding response message via some new request parameters as described in Table 6.1.1-1. For example, the parameter “Request Expiration Timestamp”, if included in a request message, indicates when the request message expires. Similarly, each response message contains some response parameters as listed in Table 6.1.1-2. For instance, the parameter “Result Expiration Timestamp ”, if contained in a response message, indicates when the response message expires. In addition, the parameter “Content” contains a resource representation, which can be present in a request message for creating/updating a resource or in a response message for retrieving a resource. The resource representation includes the attributes of the targeted resource. 

[bookmark: _Ref491253287]Table  6.1.1-1: Summary of Request Parameters in oneM2M (Adapted from oneM2M TS-0001)

	Request Message Parameters

	

	Mandatory
	Operation - operation to be executed

	
	To - the address of the target resource on the target CSE

	
	From - the identifier of the message Originator

	
	Request Identifier - uniquely identifies a Request message

	Operation dependent
	Content - to be transferred

	
	Resource Type - of resource to be created

	Optional
	Originating Timestamp - when the message was built

	
	Request Expiration Timestamp - when the request message expires

	
	Result Expiration Timestamp - when the result message expires

	
	Operational Execution Time - the time when the specified operation is to be executed by the target CSE

	
	Response Type - type of response that will be sent to the Originator

	
	Result Persistence - the duration for which the reference containing the responses is to persist

	
	Result Content - the expected components of the result

	
	Event Category - indicates how and when the system should deliver the message

	
	Delivery Aggregation - aggregation of requests to the same target CSE is to be used

	
	Group Request Identifier - Identifier added to the group request that is to be fanned out to each member of the group

	
	Filter Criteria - conditions for filtered retrieve operation

	
	Discovery Result Type - format of information returned for Discovery operation

	
	Security Info - information about the Content if it contains security parameters

	[bookmark: OLE_LINK16][bookmark: OLE_LINK17]
	Token Request Indicator - indicating that the Originator may attempt Token Request procedure (for Dynamic Authorization) if initiated by the Receiver

	
	Tokens - for use in dynamic authorization

	
	Token IDs - for use in dynamic authorization

	
	Role IDs - for use in role based access control

	
	Local Token IDs - for use in dynamic authorization



[bookmark: _Ref491634472] Table 6.1.1-2: Summary of Response Parameters in oneM2M (Adapted from oneM2M TS-0001)

	Response Message Parameters

	

	Response Status Code  - successful, unsuccessful, ack

	Request Identifier - uniquely identifies a Request message

	Content - to be transferred

	To - the identifier of the Originator or the Transit CSE that  sent the corresponding non-blocking request

	From - the identifier of the Receiver

	Originating Timestamp - when the message was built

	Result Expiration Timestamp  - when the message expires

	Event Category - what event category will be used for the response message

	Security Info - information about the Content if it contains security protocols



6.1.2 [bookmark: _Toc34210407]Limitations of oneM2M Messages
Request and response parameters as listed in Table 6.1.1-1 and Table 6.1.1-2 could make a oneM2M request or response message large. In the meantime, multiple consecutive request (or response) messages could contain the same request (or response) parameters with the same value; in another case, resource attributes contained in the “Content” parameter could be unexpected by the requestor or redundant in multiple consecutive messages. Such a large request or response message could be a burden for constrained IoT devices and/or networks with limited communication bandwidths. For example, the maximum layer-2 frame size for LoRaWAN at both US 915 MHz and EU 868 MHz band is 250 bytes, and the frame size in IEEE 802.15.4 networks is up to 127 bytes. The length of an oneM2M message if containing various request and response parameters could easily go beyond the maximum frame size which can be supported by the underlying Low-Power Wide Area Networks (LPWAN) like LoRaWAN or Low-Power Wireless Personal Area Networks (LoWPAN) such as IEEE 802.15.4. 

Figure 6.1.2-1 illustrates a smart metering use case, where each cellular UE smart meter uses low-power wide-area access technologies such as 3GPP Narrow-Band Internet of Things (NB-IoT) to communicate with a Server where an IoT service layer resides for storing and managing meter data from various UEs; the Server could be deployed by an electricity company. Basically, there could be a smart meter application running on each UE to periodically send meter readings to the Server. In addition, multiple smart meters (e.g. deployed in the same community) may report their readings to the Server in the same way (e.g. reporting frequency, how request messages will be processed by the Server, etc.). As such, each smart meter may repeatedly send similar request messages to the Server, and multiple meters may also send similar request messages to the Server at different times. These two aspects are abstracted and discussed furthermore in Figure 6.1.2-2 and Figure 6.1.2-3.      




Figure 6.1.2-1: Smart Metering Use Case based on Cellular IoT

Figure 6.1.2-2 illustrates interactions between an application and a service layer. In this example, the application (e.g. smart meter application on a smart meter in Figure 6.1.2-1) repeatedly sends request messages to the service layer. Each request message contains a set of request parameters; likewise, the corresponding response message contains response parameters. In addition, the application may request the same services/resources from the service layer during certain time durations; thus, each repeated request message includes the same set of request parameters.

Figure 6.1.2-3 shows another example, where multiple applications (e.g. smart meter applications on smart meters in Figure 6.1.2-1) interact with the same service layer. In this scenario, although three (or more) applications could access different service/resources, they may instruct the service layer to process their request messages in the same way. For example, they may indicate to the service layer: the same request message expiration time, the same result expiration time, etc. Therefore, the request message from each application may contain the same set of request parameters.
[bookmark: _Ref480878603]



Figure 6.1.2-2: Interactions between an Application and a Service Layer




Figure 6.1.2-3: Interactions between Multiple Applications and a Service Layer

The following limitations of oneM2M communication flow for constrained IoT devices are identified:
1)  If a  oneM2M request (or response) message contains too many request (or response) parameters, it cannot be sent in one layer-2 frame, which causes high message overhead and increases message transmission latency. 
2)  If a oneM2M request (or response) message is contained in multiple layer-2 frames, the loss of one layer-2 frame will results in the failure of oneM2M message delivery. 
3)  Even if a oneM2M request (or response) message can be completely contained in one layer-2 frame, the large size of the oneM2M message increases the message loss probability over the wireless channel. 
4)  Parameters contained in multiple consecutive oneM2M request (or response) messages could be the same and  redundant, which increases message overhead unnecessarily. 
5)  The resource representation in the “Content” parameter may contain some extra attributes which are not expected or required by the requestor. 
6)  The resource representation in the “Content” parameter from multiple consecutive oneM2M request (or response) messages may contain the same or redundant attributes, which causes extra message overhead unnecessarily. 
7)  The oneM2M service layer does not currently support any compression mechanisms and is unable to leverage existing header compression protocols (e.g. IETF RFC 3095 for robust header compression) which have been designed for network layer, transport layer, and application protocol layer.. None of these are directly applicable to the oneM2M service layer. 
6.1.3 [bookmark: _Toc34210408]Potential Requirements
1)  The oneM2M System shall support suitable request/response message interaction between a service layer and a constrained IoT device with low latency.
2)  The oneM2M System shall support suitable request/response message interaction between a service layer and a constrained IoT device with low communication overhead.
3)  The oneM2M System shall support suitable approaches for constrained IoT device to minimize request message size.
4)  The oneM2M System shall support suitable approaches for constrained IoT device to minimize response message size.
5)  The oneM2M System shall support suitable approaches for constrained IoT device to remove unrequired or redundant attributes from the resource representation as contained in the “Content” parameter. 
6.1.4 [bookmark: _Toc34210409]Potential Solutions
[bookmark: _Toc34210410]6.1.4.1 Solution 1: Primitive Profile
[bookmark: _Toc449605480][bookmark: _Toc450204364][bookmark: _Toc34210411]6.1.4.1.1 Introduction
oneM2M has defined various types of resources. Each oneM2M resource has attributes or metadata that describe the resource. The oneM2M service layer also defines message primitives that are used to access these resources. 
Clause 6.1.2 identifies some issues related to the size and overhead of oneM2M message primitives. For example, the resource representation in the “Content” parameter may contain some extra attributes which are not required by the requestor. In order to solve this issue, this solution defines a mechanism to define attributes of a resource that are of interest and not of interest to the Originator of a request.  The mechanism is based on defining a <primitiveProfile> resource, which can be regarded as a message template with the following capabilities. 
· <primitiveProfile> resources are created by AEs and hosted by CSEs.
· Each <primitiveProfile> resource specifies attributes that are to be included or excluded within an applicable request primitive that is processed by a CSE or an applicable response that is generated by a CSE.   
· Each <primitiveProfile> resource can be applied to different primitives that originate from specified AEs and CSEs that target specified resources, and that perform specified operations on these targeted resources. 
· When a CSE receives a request primitive, it will first identify any applicable <primitiveProfile> resources and use the information contained within the <primitiveProfile> resources to process the request primitive as well as to generate an appropriate response primitive. The objective is to reduce the size of request and response primitives. 
The proposed <primitiveProfile> resource enables the following new functionalities at a CSE. 
· First, the CSE may store one or more <primitiveProfile> resources. Each <primitiveProfile> resource comprises one or more values of parameters and attributes associated with a respective type of primitive (i.e., oneM2M request or response message) that may be received by the CSE from one or more other oneM2M entities (AEs or other CSEs). Each <primitiveProfile> resource has an associated primitive profile identifier that uniquely identifies the <primitiveProfile> resource. 
· The CSE receives a request primitive from an Originator (e.g., an AE hosted on a device). The request primitive may comprise a <primitiveProfile> resource identifier. 
· If the request primitive does not contain a <primitiveProfile> resource identifier, the CSE performs the following
· determines a list of <primitiveProfile> resource to apply to the request primitive;
· applies the list of <primitiveProfile> resource to the request primitive to modify it; and
· processes the primitive according to existing oneM2M procedure for processing a request primitive.
· If the request primitive contains a <primitiveProfile> resource identifier, the CSE performs the following
· retrieves a stored <primitiveProfile> resource having an associated primitive profile identifier that matches the primitive profile identifier in the request primitive received from the originator;
· combined the information in the received primitive with the parameter and/or attribute values in the retrieved <primitiveProfile> resource to form a modified primitive; and
· processes the modified primitive according to existing oneM2M procedures for processing a request primitive.
[bookmark: _Toc34210412]6.1.4.1.2 <primitiveProfile> Resource Definition 
A <primitiveProfile> resource can support criteria which define the scope of applicability of the primitive profile. For example:
· A <primitiveProfile> resource can be defined to apply to primitives from specific Originators.
· A <primitiveProfile> resource can be defined to apply to all primitives targeting specific type(s) of resources.
· A <primitiveProfile> resource can be defined to apply to all primitives with specified operation(s).
· A <primitiveProfile> resource can be defined to apply to primitives targeting specific resource instances.
· A <primitiveProfile> resource can be defined to apply to all primitives of a specified oneM2M release version.  
For this purpose, the <primitiveProfile> resource has some new attributes in addition to the existing oneM2M universal and common attributes defined (see Table 6.1.4.1.2-1). 
· The IDList, resourceTypes, operations, resourceIDs and releaseVersions attributes indicate the target that the <primitiveProfile> resource applies to. A <primitiveProfile> resource can be applied to any entity/resource/operation as indicated by these attributes and/or a combination of them, e.g. CREATE <contentInstance> at /targetUri -from App01 using Release2. 
· The other attributes of a <primitiveProfile> resource specify what actions to apply to oneM2M primitives. For example, the <primitiveProfile> could specify to add an expirationTime attribute to the resource payload and modify the requestExpirationTime parameter of a request primitive.
Table 6.1.4.1.2-1 : <primitiveProfile> resource attributes

	Attributes of <primitiveProfile>
	Multiplicity
	RW/
RO/
WO
	Description
	<primitiveProfileAnnc> Attributes

	IDList
	1 (L)
	RW
	List of identifiers of the entities that the profile applies to. Wildcards can also be used (e.g. “*”, “AE*”).
Example values of this attribute can be: “CSE01/Cae01”. In this case, this <primitiveProfile> will be only applied to requests received from Cae01 and/or responses sent to Cae01. 
	OA

	resourceTypes
	0..1(L) 
	RW
	List of resource types that the profile applies to.
Example values of this attribute can be: <flexContainer>, or <flexContainer> and <container>
	OA

	operations
	0..1 (L)
	RW
	List of operations and/or its corresponding responses that the profile applies to.
Example values of this attribute can be: RETRIEVE, or RETRIEVE and UPDATE. 
	OA

	resourceIDs
	0..1 (L)
	RW
	List of targeted Resource-IDs that the profile applies to.  Wildcards can also be used (e.g. “CSE01/AE01/*”).
Example values of this attribute can be: “CSE01/Cae01/flexContainer01”
	OA

	releaseVersions
	0..1 (L)
	WO
	List of release version indicators that the profile applies to.
Example values of this attribute can be: “Rel-3”, or “Rel-2 & Rel-3”
	OA

	additions
	0..1 (L) 
	RW
	A list of attribute or parameter names with optional values.  The name is the attribute or parameter that is added to the primitive. The optional value is the value that is configured within the attribute or parameter. For RETRIEVE cases, only the name is included for attributes to indicate only the attributes listed are to be returned.
Example values of this attribute can be: “containerDefinition”. In this case, when a RETRIEVE is issued to a <flexContainer> resource with its resource ID (e.g. “CSE01/Cae01/flexContainer01”) included in resourceIDs attribute of this <primitiveProfile> resource, this <primitiveProfile> resource will be applied to the RETRIEVE and accordingly the response message will only contain the “containerDefinition” attribute representation.
	OA

	deletions
	0..1 (L)
	RW
	A list of attribute and parameter names that indicates the attributes and parameter that are to be removed from the primitive.
Example value of this attribute can be: “creationTime”. In this case, when a RETRIEVE is issued to a <flexContainer> resource with its resource ID (e.g. “CSE01/Cae01/flexContainer01”) included in resourceIDs attribute of this <primitiveProfile> resource,  this <primitiveProfile> resource will be applied to the RETRIEVE and accordingly the “creationTime” attribute representation will be removed from the response message.
	OA

	modifications
	0..1 (L)
	RW
	A list of attribute and parameter names and values that indicate the attributes and parameter that are to have their values replaced with the value specified within this attribute.
Example value of this attribute can be: “ontologyRef = sensorOntology”. In this case, when an UPDATE is issued to a <flexContainer> resource with its resource ID (e.g. “CSE01/Cae01/flexContainer01”) included in resourceIDs attribute of this <primitiveProfile> resource,  this <primitiveProfile> resource will be applied to the UPDATE and accordingly the “ontologyRef” attribute of the flexContainer01 resource will always be set to “sensorOntology” even if the UPDATE contains a different value for the “ontologyRef” attribute.   
	OA

	applicability
	1
	RO
	Determines whether the profile is applicable to request primitives, response primitives or both.
Example values of this attribute can be: “REQUEST”, “RESPONSE”, or “REQUEST and RESPONSE”.
	OA



[bookmark: _Toc449605481][bookmark: _Toc450204365][bookmark: _Toc34210413]6.1.4.1.3 <primitiveProfile> Resource Provisioning
A <primitiveProfile> resource can be provisioned to a CSE by an administration application. 
Figure 6.1.4.1.3-1 illustrates a <primitiveProfile> resource example in which an AE only wishes to receive back the resourceID attribute in the response to a <contentInstance> resource CREATE.  
· The IDList attribute is configured with a value of “AE001”
· The resourceTypes attribute is configured with a value of “4” (i.e. <contentInstance> resource type) 
· The operations attribute is configured with a value of “1” (i.e. CREATE operation)
· The deletions attribute is configured to remove all attributes from the <contentInstance> CREATE response except the resourceID attribute which the AE is interested in.


 
Figure 6.1.4.1.3-1: Example <primitiveProfile>

[bookmark: _Toc449098738][bookmark: _Toc449286321][bookmark: _Toc449098739][bookmark: _Toc449286322][bookmark: _Ref449286534][bookmark: _Ref449592576][bookmark: _Toc449605483][bookmark: _Toc450204367][bookmark: _Toc34210414]6.1.4.1.4 Applying a <primitiveProfile> Resource
When a oneM2M request primitive arrives at a Hosting CSE, the Hosting CSE has two approaches to apply a <primitiveProfile> resource to the request primitive, dependent on if an arriving message contains a <primitiveProfile> resource identifier or not as described in Clause 6.1.4.1.1. If a <primitiveProfile> resource identifier is contained in the request primitive, the Hosting CSE simply retrieves the corresponding <primitiveProfile> resource and uses any parameters/attributes contained in the <primitiveProfile> resource to modify the request primitive and then processes the modified request primitive according to existing oneM2M procedures. To support this scenario, a new oneM2M request parameter (referred to as primitiveProfileIdentifier) is proposed to explicitly indicate any applicable <primitiveProfle> resources for a request primitive. 
When a <primitiveProfile> resource identifier is not contained in a received request primitive, the Hosting CSE searches for applicable <primitiveProfile> resources to apply to the request before processing it as well as to the response primitive before returning it to the Originator (see Figure 6.1.4.1.4-1).  


Figure 6.1.4.1.4-1: Procedures for applying a <primitiveProfile>

Steps in <primitiveProfile> resource procedures as illustrated on Figure 6.1.4.1.4-1 are described below: 
Step 1: <primitiveProfile> resources are retrieved or searched to find any that are applicable to the request. The first search needs to capture all of the profiles that can apply to the primitive received.  An example search, using SQL type language is
SELECT  all primitive profiles WHERE IDList contains Originator OR resourceIDs contains To OR resourceTypes contains type OR operations contains operation OR releaseNumber equals release version indicator.  
This generates a candidate list of primitive profiles that may apply to the received primitive.  
Step 2: Each selected <primitiveProfile> resource is checked for a match.  A match occurs if and only if all of the criteria specified within a <primitiveProfile> resource match. This can generate multiple matches. The CSE can support multiple matches as a long as <primitiveProfile> resources do not conflict with one another (see Step 4).    
Step 3: Each matched <primitiveProfile> resource is checked to see if the “creator” of the <primitiveProfile> resource has permissions to modify the request and response primitive.  How a CSE makes this determines is based on local CSE policy.  For example, a CSE can restrict creators of <primitiveProfile> resources to modify only requests that they originate themselves.  Alternatively, a CSE can give privileges to certain creators to modify the request and response primitives of other Originators.  
Step 4: This step describes the case where multiple matches occurs. In this case a consistency check can optionally be applied to ensure that the changes described by the primitive profiles do not conflict with each other.  For example, two primitive profiles that perform additions, such as “expirationTime=date1” and “expirationTime=date2” conflict with each other. This can be handled according to local CSE policy.  For example, the CSE could detect the conflict and generate an error or decide on a value to configure into the attribute to resolve the conflict.  
Step 5: Appropriate <primitiveProfile> resources are applied to the oneM2M request primitive prior to normal request processing.  A request primitive may still include parameters and attributes defined within an applicable <primitiveProfile> resource. Their presence in a request message may be used by the Originator to indicate that the default values specified within the <primitiveProfile> resource should be overridden with the provided values in the request primitive. 
Step 6: After request processing is complete and the CSE is generating the response, the <primitiveProfile> resources are also applied to the oneM2M response primitive, if applicable.  For example, when the operations is configured with a value of “RETRIEVE” and deletions is configured with a value of “expirationTime”.  In this case, the expirationTime attribute will be filtered and not included in the response primitive.

6.1.4.2 [bookmark: _Toc34210415][bookmark: _Ref411886577][bookmark: _Ref419801247][bookmark: _Ref420180401][bookmark: _Ref419801248]Solution 2: Message Scripting Service
6.1.4.2.1 [bookmark: _Toc34210416]Definition of Message Scripting (MSC) CSF
A Message Scripting (MSC) CSF enables a Hosting CSE to be capable of offloading the generation and processing of oneM2M requests from request originators.  The MSC CSF supports the following capabilities. 

· The MSC CSF can support the capability to allow oneM2M request originators to configure one or more oneM2M requests to be scripted.  Once configured, a requestor can then manually trigger the MSC CSF to generate scripted request(s) in an on-demand fashion without having to send the actual request to the Hosting CSE.  Each generated scripted request could be sent to another AE/CSE, or just processed locally by the MSC CSF at the Hosting CSE (e.g. to repeatedly create a new resource). The requestor can also configure the MSC CSF with scripted request generation criteria to allow the MSC CSF to auto-trigger itself and generate request(s) based on if/when the specified criteria have been met; essentially, the Hosting CSE performs message repetition since it may periodically generate many scripted requests.   Examples of criteria can include schedule information or a logical expression that can reference the state of one or more CSE hosted resources.   

· The MSC CSF can also support the capability to allow requestors to query and discover one or more scripted requests supported by the MSC CSF.  Once discovered, a requestor can then manually trigger the MSC CSF to generate a request based on the scripted request.  The MSC CSF can qualify the discovery and triggering of a scripted request by a requestor based on whether the requestor has the proper access privileges to the scripted request.

· After generating requests (referred to as scripted requests) on behalf of a requestor, the MSC CSF can perform scripted response handling on behalf of a requestor. This response handling can be based on one or more response handling policies. The MSC CSF can support various response handling policies such as filtering and aggregation of responses. By supporting these response handling capabilities, the MSC CSF can provide increased levels of automation and offloading for its request originators.  In addition, the MSC CSF can also offload the network by reducing the number of unwanted and repetitive responses that must be transmitted across the network. For example, responses that meet certain criteria defined by the applications can be returned and other that do not can be filtered by the SL and not returned to the request originator. 

Overall, the MSC CSF aims to reduce the number of request/response messages between an Originator (e.g. an AE) and a Hosting CSE and enables lighter weight message handling between the Originator and the Hosting CSE. 

6.1.4.2.2 [bookmark: _Toc34210417]New <scriptedRequest> Resource
A new oneM2M <scriptedRequest> resource type is proposed to support the MSC CSF capabilities described in clause 6.1.4.2.1 and  includes the child resources specified in Table 6.1.4.2.2-1 and the attributes specified in Table 6.1.4.2.2-2. Note that a <scriptedRequest> resource can be discovered and leveraged by various AEs.    

An AE or CSE can create a <scriptedRequest> resource; an AE or CSE can also send a trigger request to a created <scriptedRequest> resource to trigger the Hosting CSE to generate scripted requests.


Table 6.1.4.2.2-1: <scriptedRequest> child resources

	Child Resource Type
	Multiplicity
	Description

	<schedule>
	0..1
	A child resource that contains schedule information that defines the time periods when the Hosting CSE generates scripted requests based on the parent <scriptedRequest> resource.

	<semanticDescriptor>
	0..1
	A child resource that contains semantic metadata to describe the parent <scriptedRequest> resource.





Table 6.1.4.2.2-2: <scriptedRequest> resource attributes

	Attributes of <scriptedRequest>
	Description

	scriptedRequestEnable
	When set to “TRUE”, the Hosting CSE is permitted to generate scripted requests defined by this resource on behalf of the request originator.  When set to “FALSE” the Hosting CSE will not generate scripted requests defined by this resource.  

	scriptedRequestTrigger
	Used by a requestor to manually / explicitly trigger the Hosting CSE to generate a scripted request on its behalf.  An update of this attribute will trigger the Hosting CSE to generate a scripted request defined by this resource.  

A Hosting CSE can support using parameters specified in the trigger request to configure / override parameter settings of this resource and/or system defaults.  For example, a Hosting CSE can use trigger request parameters such as From, Request Expiration Timestamp and Operational Execution Time to configure scripted request parameters.  This can allow a <scriptedRequest> resource to be more easily used by different request originators.  

 For example, the value of this attribute may be:
· scriptedRequestTrigger = “NoOverwrite”: The Hosting CSE should not use parameters specified in the trigger request to configure / override parameter settings of this resource and/or system defaults
· scriptedRequestTrigger = “Overwrite”: The Hosting CSE should use parameters specified in the trigger request to configure / override parameter settings of this resource and/or system defaults. 


	scriptedRequestCriteria
	This attribute can contain a list of criteria that the Hosting CSE can use as auto-trigger conditions to generate scripted requests defined by this resource. An example condition is to set up criteria for generating scripted requests repeatedly. Also, scriptedRequestCriteria can indicate the duration that the Hosting CSE will perform scripted requests.  

The value of this attribute is a list of condition statements connected by “AND/OR/XOR” logic operations (similar to how eventNotificationCriteria is specified in TS-0001 for resource subscription), to be used as auto-trigger criteria. Each condition statement is defined as a triple and can consist of an attribute of a hosted resource, an operator and a value. The Hosting CSE evaluates the value of this attribute and it only triggers to create scripted request when the value evaluates to TRUE.  

An example condition statement is the following:
csebase/ae01/flexContainer01/battery < 10
If / when the value of the attribute at the specified path “csebase/ae01/flexContainer01/battery” is less than a value “10”, then the Hosting will trigger the generation of a request. 


	responseHandlingOperation
	When the Hosting CSE receives a response to a request defined by this resource, this attribute defines whether the Hosting CSE will aggregate or filter the response on behalf of the request originator.  

If this attribute is not configured, then the Hosting CSE will not aggregate or filter responses.  Instead, all responses will be individually processed and stored and/or forwarded based on the setting of the responseHandling attribute. 

For example, the value of this attribute may be:
· responseHandlingOperation = “NoAggregate”: All responses will be individually processed and stored and/or forwarded based on the setting of the responseHandling attribute. 
· responseHandlingOperation = “Aggregate”: The Hosting will aggregate all responses according to responseAggregationRules attribute. 


	responseHandling
	This attribute controls whether the Hosting CSE stores and/or forwards response primitives that it receives for the scripted request primitives it sends.  The attribute can be configured with the following values:

· STORE – Hosting CSE stores response primitives in the responsePrimitives attribute but does not forward them to the request originator configured in the From parameter of the request primitive. 

· FORWARD - Hosting CSE does not store response primitives in the responsePrimitives attribute but does forward them to the request originator configured in the From parameter of the request primitive.

· STORE & FORWARD - Hosting CSE stores response primitives in the responsePrimitives attribute and also forwards them to the request originator configured in the From parameter of the request primitive.

	responseAggregationRules
	This attribute can define the max number of responses to be aggregated together into a single aggregated response and the max duration of time to aggregate together responses into a single aggregated response.  When only the number is specified by the request originator, the Hosting CSE can set a default duration based on local policy.  


	maxResponsePrimitives
	This attribute defines the maximum number of response primitives that the Hosting CSE stores within the responsePrimitives attribute.  When the maximum number is reached, the Hosting CSE will replace the oldest response primitive stored within the responsePrimitives attribute with each new response primitive that it stores.   

	requestPrimitive
	This attribute is configured with a oneM2M request primitive.  A Hosting CSE uses information contained in this attribute to generate a scripted request.
In the case of message repetition, this attribute is configured to provide detail information about operating message repetition. 
This attribute includes the following information for message repetition: 
· targetResource: Indicates a resource that a scripted request will target (e.g., contentInstance)
· targetOperation: Indicate the operation that a scripted request needs to perform on the resource as denoted by targetResource. An example is CREATE and UPDATE.
· valueForRepetition: Used by an Originator to set up a value to be repeated used, for example, to repeatedly create a <contentInstrance>) with the temperature value set to 15 celsius. 
· scriptingOriginator: Defines the originator for each scripted request.


	responsePrimitives
	This attribute contains a list of response primitives that the Hosting CSE stores when receiving and processing responses to scripted requests.  A request Originator can retrieve this attribute to fetch response primitives or subscribe to this attribute to receive notifications when the Hosting CSE updates this attribute with a new response primitive. For example, this attribute can contain the last response sent to the Originator. 




6.1.4.2.3 [bookmark: _Toc34210418]Example Procedure for Scripted Requests
Figure 6.1.4.2.3-1 shows an example procedure. In this example, an IN-AE needs to repeatedly retrieve resources hosted by an ASN-CSE by sending requests to an IN-CSE.  The IN-CSE forwards the requests to ASN-CSE. 
In order to reduce the number of request/response messages between the IN-CSE and the IN-AE, the IN-CSE has the MSC CSF capabilities. As an example,
· IN-AE first creates a scriptedRequest01 resource at IN-CSE (Steps 1-3), which has an attribute responseHandling set to “STORE” and another attribute scriptedRequestCriteria set to some criteria. 
· When the criteria set in scriptedRequestCriteria is met, IN-CSE triggers generation of scripted requests (Steps  4 and 8).
· IN-CSE generates two scripted retrieve requests, which are sent to ASN-CSE (Steps 5 and 9). As a result, IN-CSE receives two responses (Steps 6 and 10). Because  scriptedRequest01’s responseHandling = “STORE”, IN-CSE stores both responses within scriptedRequest01’s responsePrimitives attribute (Steps 7 and 11).
· IN-AE retrieves scriptedRequest01/responsePrimitives to get all responses (Steps 12 and 13).  
· Alternatively, IN-AE can create a subscription to scriptedRequest01/responsePrimitives and receive notifications from the IN-CSE for each response stored in scriptedRequest01/responsePrimitives.  
  


Figure 6.1.4.2.3-1: oneM2M Scripted Sequence of Requests for Retrieving a Target Resource

Step 1:  IN-AE sends a CREATE request to IN-CSE to create a <scriptedRequest> resource. IN-AE sets the attribute responseHandling= “STORE” and also configure some criteria in the attribute scriptedRequestCriteria (e.g., to generate scripted retrieve requests every one hour).
 
Step 2: IN-CSE accordingly creates a new resource scriptedRequest01

Step 3: IN-CSE sends a response to IN-AE including the identifier of the created scriptedRequest01 resource, so that IN-AE is able to retrieve scriptedRequest01’s attribute responsePrimitives in Step 12.  

Step 4: The IN-CSE’s MSC CSF monitors the criteria specified within the scriptedRequest01/scriptedRequestCriteria to determine if/when the proper conditions have been met for it to generate a scripted sequence of requests. In this example the criteria is schedule based (i.e. IN-CSE’s MSC CSF needs to generate scripted retrieve requests every one hour). Note, not shown in this example, but other criteria can also be specified. 

Step 5: The IN-CSE’s MSC CSF uses information specified in the scriptedRequest01 resource to generate a first scripted retrieve request for ASN-CSE.  

Step 6: The first scripted request is received and processed by ASN-CSE.  ASN-CSE returns a first response to the IN-CSE’s MSC CSF.  

Step 7: IN-CSE receives the first response from ASN-CSE. In this case, because scriptedRequest01’s attribute responseHandling= “STORE”, IN-CSE stores the first response to scriptedRequest01’s attribute responsePrimitives. 

Step 8: Same as Step 4.
Step 9: Similar to Step 5, The IN-CSE’s MSC CSF uses information specified in the scriptedRequest01 resource to generate a second scripted retrieve request for ASN-CSE.  

Step 10: Similar to Step 6, the second scripted request is received and processed by ASN-CSE.  ASN-CSE returns a second response to the IN-CSE’s MSC CSF.  

Step 11: Similar to Step 7, IN-CSE receives the second response from ASN-CSE. In this case, because scriptedRequest01’s attribute responseHandling= “STORE”, IN-CSE stores the second response to scriptedRequest01’s attribute responsePrimitives. 

Step 12: IN-AE sends a RETRIEVE request to IN-CSE to retrieve scriptedRequest01’s attribute responsePrimitives in order to get these two responses generated by ASN-CSE. 

Step 13: IN-CSE sends a response to IN-AE, which basically includes those two responses contained in scriptedRequest01’s attribute responsePrimitives. 


Figure 6.1.4.2.3-2 shows another example procedure. In this example, an AE requires to repeatedly create the same type of target resources (e.g. <contentInstance>) at an IN-CSE. The AE first creates a <scriptedRequest> resource at the IN-CSE to describe this requirement. As a result, the IN-CSE just leverages information contained in the <scriptedRequest> to periodically create new targe resources (e.g. <contentInstance>) without waiting for a CREATE request from the AE. Note that each created target resource could be subscribed to by another AE and then IN-CSE needs to send out a notification for the creation of each target resource. 




Figure 6.1.4.2.3-2: oneM2M Scripted Sequence of Requests for Repeatedly Creating Target Resources


Steps 1-3: Similar to Steps 1-3 on Figure 6.1.4.2.3-1, ASN-AE sends a request to IN-CSE to create a <scriptedRequest> resource with its scriptedRequestCriteria and requestPrimitive attributes set as: to repeatedly create <contentInstance> under container01 with the value “v1” until date “d” for every time “t”. ASN-AE can also configure a response policy, for example, no response is required from IN-CSE whenever a new <contentInstance> is created.  
 
Step 4: IN-AE subscribes to container01 to be notified when a new <contentInstance> resource is created under container01. 

Step 5: IN-CSE’s MSC CSF monitors the criteria specified within the scriptedRequest01/scriptedRequestCriteria to determine if/when the proper conditions have been met for it to generate a scripted sequence of requests. In this example the criteria is schedule based (i.e. IN-CSE’s MSC CSF needs to a new <contentInstance> resource every t =10 seconds). 

Step 6: After time ‘t’ (e.g., 10 seconds) duration, IN-CSE performs the requested message repetition. In this case, IN-CSE creates a new <contentInstance> resource with the value set to ‘v1’ under the container01 resource. 

Step 7: IN-AE gets a notification for the creation of the new <contentInstance> under container01. 

Step 8: Before reaching the next time ‘t’, ASN-AE measures a value which is different (e.g., ‘v2’) from the preconfigured value in the <scriptedRequest> resource. As this value is not the value ASN-AE is expecting, ASN-AE updates the attribute (i.e., requestPrimitive) of <scriptedRequest> about this exceptional value. 

Step 9: Similar to Step 5.

Step 10: Similar to Step 6.

Step 11: Similar to Step 7. 


6.2 [bookmark: _Toc34210419]Analysis of oneM2M Requests Targeted Towards AEs 
[bookmark: _Toc34210420]6.2.1  Introduction of oneM2M Requests Targeted Towards AEs
oneM2M AEs currently rely on receiving oneM2M requests via the oneM2M subscription/notification framework.  Figure 6.2.1-1 illustrates how the oneM2M subscription/notification framework is used by an AE to receive a request originating from another AE.   For example, in a real world use case deployment, AE1 could function as a door lock device and AE2 could represent an application hosted on a smartphone that is used to lock and unlock the door.  
In this use case, AE1 first creates a resource in the Hosting CSE for the purposes of receiving commands from other AEs in the system (e.g. AE2). AE1 then creates a subscription to this resource such that it is notified by the Hosting CSE if the resource is updated.  AE2 then performs an update of the resource which results in the Hosting CSE sending a notification to AE1.  The update response that is returned back to AE2 can be returned immediately or the Hosting CSE can wait until it receives a notification response from AE1.  This is determined by the type of subscription that AE1 creates in the Hosting CSE.  


Figure 6.2.1-1: oneM2M AE Subscription/Notification-based Request Targeting

[bookmark: _Toc34210421]6.2.2  Limitations of oneM2M Requests Targeted Towards AEs
The oneM2M architecture currently does not support end-to-end re-targeting of requests such as RETRIEVE, UPDATE, DISCOVER, etc. to AEs as illustrated in Figure 6.2.2-1.  A oneM2M AE is currently limited to receiving requests only via the oneM2M subscription/notification framework.  As a result an AE can only receive oneM2M NOTIFY requests.  This limitation is a bi-product of the fact that the current oneM2M architecture requires oneM2M AEs to mirror their resources into CSE hosted resources in order for these resources to be made accessible to other oneM2M entities.    



Figure 6.2.2-1: oneM2M Lacks End-to-End Re-targeting of Requests to AEs

Due to the lack of support for re-targeting non-NOTIFY requests to AEs in oneM2M there are several limitations and inefficiencies that can be problematic for certain types of real world deployments.  

Limitation #1 – This limitation involves use cases requiring mirrored resources hosted in a CSE that need to be to be kept current (i.e. fresh) with the state of an AE. For example, the current state of a device needs to be known (i.e. what is the current location of the device).   Different types of use cases can have different freshness requirements for mirrored resources.  Based on the freshness requirements, an AE has to keep its mirrored resources fresh enough to meet these requirements.  This is done by issuing repeated update requests to the CSE on a frequent enough basis as shown in Figure 6.2.2-2.  The AEs consuming the information from these mirrored resources however may be issuing retrieve requests on a much less frequent basis even though they require the resources to be kept current with a certain freshness.  Since the AE mirroring its resources has no insight into when its mirrored resources are being accessed it has to continuously update them in case they are accessed.   This example demonstrates how, in some deployment scenarios, mirroring of resources is not always an efficient deployment model.  In this type of use case, re-targeting a request down to a device hosting an AE rather than mirroring of resources can be more efficient.


Figure 6.2.2-2: oneM2M AE Mirroring Inefficiencies

Limitation #2 – This limitation involves the oneM2M subscription/notification framework and how it is not an optimal mechanism for re-targeting requests to an AE hosted on a lightweight device.  Currently the oneM2M subscription/notification framework does support the capability to re-target UPDATE requests to an AE as illustrated in Figure 6.2.1-1.  This is done by sending a NOTIFY request to an AE when an UPDATE request is received to the AE’s mirrored resource.  Within the NOTIFY request, the updated representation of the mirrored resource is provided.  When this NOTIFY request is sent to the AE, the Hosting CSE holds-off sending the UPDATE response to the Originator until the Hosting CSE receives a NOTIFY response back from the AE.  When the AE receives the NOTIFY it can extract and process the resource representation from the payload.  The AE can then send a NOTIFY response back to the Hosting CSE indicating whether it successfully processed the updated resource representation and it is ok for the Hosting CSE to apply the update to the mirrored resource.  The Hosting CSE in turn processes the NOTIFY response, conditionally updates the mirrored resource, and returns a response back to the Originator.  The major drawback with  re-targeting UPDATE requests to an AE via the oneM2M subscription/notification framework is the extra overhead incurred with tunneling/encapsulation the updated resource representation with the NOTIFY request.  This tunneling/encapsulation adds extra overhead to the message size as well as message processing.  

Other than UPDATE, the oneM2M subscription/notification framework does not currently support re-targeting other types of requests (e.g. RETRIEVE) to AEs.  Re-targeting these other types of requests to an AE can be very useful since it can allow an Originator’s RETRIEVE request to be forwarded to AE if/when the mirrored resource does not contain a representation that meets the Originator’s freshness requirements (i.e. it’s too stale).  Re-targeting a RETRIEVE via the oneM2M subscription/notification framework however is more complex and less efficient than the UPDATE and for this reason oneM2M has not defined support for this capability.  For example, if oneM2M were to entertain this idea, then it would most likely have to define something like what is shown in Figure 6.2.2-3.  The added complexity/inefficiency in this procedure is the additional UPDATE request from AE1 to the Hosting CSE when AE1 receives a NOTIFY request that a RETRIEVE to its mirrored resource in the Hosting CSE was received from AE2.  This UPDATE is needed to provide the Hosting CSE with an updated representation that the Hosting CSE can then use to update the representation of its mirrored resource and include in the response back to the Originator.   From this figure, one can see that re-targeting RETRIEVE requests to AEs via the oneM2M subscription/notification framework has its limitations and complexities and is not very efficient.  For this reason, oneM2M should analyze other alternatives.  



Figure 6.2.2-3: oneM2M AE Subscription/Notification-based RETRIEVE Request Targeting

The following is a summarized list of limitations in the current oneM2M architecture regarding targeting requests towards oneM2M AEs:

1) A oneM2M AE is currently limited to receiving only oneM2M NOTIFY requests.  An AE is not permitted to receive any other type of oneM2M request (i.e. CREATE, RETRIEVE, UPDATE, DELETE or DISCOVER).  
2) A oneM2M AE must mirror its locally hosted resources into CSE hosted resources (e.g. containers, flexContainers, timeSeries, mgmtObj, etc) such that they can be accessed by other entities in the oneM2M system.  
3) Mirrored resources containing AE state information may become stale depending on how often an AE updates the mirrored resources and therefore may not meet the freshness requirements of the other entities accessing these mirrored resources. 
4) oneM2M lacks the capability to initiate the re-fresh of a stale resource. oneM2M lacks the capability for a Hosting CSE to obtain an updated representation of a mirrored resource from an AE if/when a RETRIEVE to the mirrored resource requires a fresher representation
5) For an AE to receive an updated representation of a mirrored resource in a Hosting CSE, it must first create and SUBSCRIBE to this resource such that updated resource representations can be encapsulated and tunnelled to the AE via a oneM2M NOTIFY request.  This tunnelling/encapsulation adds message latency and processing overhead to the AE as well as the end-to-end communication path. 
[bookmark: _Toc34210422]6.2.3  Potential Requirements
1) The oneM2M System shall support request/response message interaction with M2M Devices with minimal latency.
2) The oneM2M System shall support request/response message interaction with M2M Devices with minimal number of request/response messages.
3) The oneM2M System shall support request/response message interaction with M2M Devices with minimal request/response message size.
4) The oneM2M System shall support the capability to initiate the update (i.e. refresh) of a resource by its creator if/when the representation of the resource is too old (i.e. stale) to meet the requirements of a requester.   
6.2.4 [bookmark: _Toc34210423]Potential Solutions
[bookmark: _Toc34210424]6.2.4.1 Solution 1: Retargetting via a New Attribute resourceMappingRules
[bookmark: _Toc34210425]6.2.4.1.1 Definition of a New Attribute resourceMappingRules
A new common attribute resourceMappingRules is proposed.  This attribute can be supported by various oneM2M resources such as <flexContainer>, <mgmtObj>, <container>, <timeSeries>, etc.  As illustrated in Figure 6.2.4.1.1-1, resourceMappingRules serves the following purposes: 
· First, it indicates the mapping from a given oneM2M resource to local resource(s) hosted at an AE. Figure 6.2.4.1.1-1 presents an example, where an AE registers to a CSE and a <AE> resource is created. A <Rsrc-1> child resource of <AE> is also created which has some attributes and child resources as well. The AE hosts some local resources such as <localRsrc-1>, <localRsrc-2>, etc.  The resourceMappingRules contains mapping rules that indicate the relationship between oneM2M resources/attributes and locally hosted resources at the AE. Five mapping rule examples are illustrated in Figure 6.2.4.1.1-1. For instance, attribute-1 of <Rsrc-1> maps to <localRsrc-1> locally hosted at the AE. Not shown in Figure 6.2.4.1.1-1, but resourceMappingRules can also include other information such as retargeting filter criteria, retargeting schedule, retargeting policies, etc. 
· The Hosting CSE can automatically and intelligently determine if and how a received request on a given resource/attribute should be retargeted to an AE based on information contained in resourceMappingRules. Still taking Figure 6.2.4.1.1-1 as an example, if the Hosting CSE receives a RETRIEVE request on attribute-1 of <Rsrc-1>, it will automatically retarget the RETRIEVE request to <localRsrc-1> at the AE according to the MappingRule-1.  As also shown in Figure 6.2.4.1.1-1, resourceMappingRules can be applied to the given resource <Rsrc-1> and/or its child resources, which can be described as retargeting scope and included in resourceMappingRules as well.  
In summary, this new common attribute resourceMappingRules can be introduced to various types of existing or future new oneM2M resources (e.g. <flexContainer>, <mgmtObj>, <container>, <timeSeries>, etc.) and it can be leveraged by the Hosting CSE to flexibly and efficiently determine and perform retargeting a received requests to an AE.  


Figure 6.2.4.1.1-1: Mapping between oneM2M Resources/Attributes at a Hosting CSE and Local Resources at an AE
resourceMappingRules is formally defined in Table 6.2.4.1.1-1 as a common attribute. 

Table 6.2.4.1.1-1: Definition of resourceMappingRules Attribute

	Attribute Name
	Multiplicity
	RW/
RO/
WO
	Description

	resourceMappingRules
	0..1 (L)
	RW
	This common attribute contains a list of rules for mapping the parent resource on the Hosting CSE to one or more corresponding resources hosted by an AE. Each mapping rule contains information for retargeting a request to an AE such as retargeting schedule, retargeting filter criteria, etc. Table 6.2.4.1.1-2 gives the definitions of the elements of this attribute. 

The mapping information stored in this attribute enables a Hosting CSE to access the services hosted and offered by an AE by retargeting a received oneM2M request primitive as one or more simplified oneM2M requests to an AE for processing.  Once the AE finishes processing the retargeted requests and returns responses, the Hosting CSE can use this information to update its local resource and formulate a oneM2M response primitive that it returns back to the Originator AE/CSE of the oneM2M request.  





Table 6.2.4.1.1-2 Definition of resourceMappingRules Elements

	Element 
	Multiplicity
	Note

	name
	1
	This element is configured with either a name of an attribute of the parent resource, or a value of “la” indicating that this rule is applicable to the content attribute of the <latest> virtual child resource of the parent resource.  This latter case is only applicable when the parent resource is a <contentInstance> or <timeSeriesInstance> resource.
 

	mappedID
	1
	This element contains the identifier of the mapped resource and attribute hosted by an AE.
 
The identifier is configured with the identifier of an <AE> resource followed by a path to the corresponding resource and attribute hosted by the AE.  The identifier of the <AE> resource can be formatted as a structured or unstructured CSE-Relative-Resource-ID, SP-Relative-Resource-ID or Absolute-Resource-ID. 
 
The following is an example.
/CSE0001/AE0001/foo/bar/
 
Where /CSE0001/AE0001 is a structured SP-Relative-Resource-ID of an <AE> resource and foo/bar is the path to the resource (i.e. foo) and attribute (i.e. bar) hosted by the AE.
 
A Hosting CSE uses this information to determine the proper pointOfAccess and requestReqchability stored in the <AE> resource.   Based on this information, the Hosting CSE can determine which underlying protocol, network address (e.g. IP or FQDN) and port to use when issuing requests to this AE resource attribute.  
 
Note, if a Hosting CSE needs to access multiple attributes of the same AE hosted resource, the Hosting CSE can issue a single request to the AE that performs a request on multiple attributes.
 
Note, if a Hosting CSE needs to access multiple attributes of different AE hosted resources, the Hosting CSE issues different requests to each AE hosted resource.    

	retargetCriteria
	0..1(L)
	Defines a list of conditions that the Hosting CSE checks are valid before retargeting received requests that target the named attribute. See retargetCriteria definition in Table 6.2.4.1.1-3.   

	retargetSchedule
	0..1
	Defines a schedule for when the Hosting CSE will retarget received requests that target the named attribute. 

	retargetPrivileges
	0..1
	List of identifiers (i.e. AE-IDs) of entities that have privileges to retarget requests that target the named attribute.  




Table 6.2.4.1.1-3: Definition of retargetCriteria
	Condition
	Interpretation

	operations
	The type of operation defined in the request has to match a specified type of operation defined by this condition.

The types of operations supported in this release of the document include RETRIEVE and UPDATE.  

	attribute
	If the corresponding name element in the resourceMappingRules is configured with the name of an attribute of the parent resource, then its value has to equal the specified value defined by this condition.  

If the corresponding name element of the resourceMappingRules is configured with a value of “la”, then the value of the specified attribute of the corresponding latest <contentInstance> or <timeSeriesInstance> resource has to equal the specified value defined by this condition.

The format of this condition is attrName=Value.  E.g. "creator=Sam".

	createdBefore
	If the corresponding name element of the resourceMappingRules is configured with the name of an attribute of the parent resource, then the creationTime attribute of the parent resource resource has to be chronologically before the specified value defined by this condition.

If the corresponding name element of the resourceMappingRules is configured with a value of “la” then the creationTime attribute of the corresponding latest <contentInstance> or <timeSeriesInstance> child resource has to be chronologically before the specified value defined by this condition.


	createdAfter
	If the corresponding name element of the resourceMappingRules is configured with the name of an attribute of the parent resource, then the creationTime attribute of the parent resource resource has to be chronologically after the specified value defined by this condition.

If the corresponding name element of the resourceMappingRules is configured with a value of “la” then the creationTime attribute of the corresponding latest <contentInstance> or <timeSeriesInstance> resource has to be chronologically after the specified value by this condition.

	modifiedSince
	If the corresponding name element of the resourceMappingRules is configured with the name of an attribute of the parent resource, then the lastModifiedTime attribute of the parent resource resource has to be chronologically after the specified value defined by this conditon.

If the corresponding name element of the resourceMappingRules is configured with a value of “la” then the lastModifiedTime attribute of the corresponding latest <contentInstance> or <timeSeriesInstance> resource has to be chronologically after the specified value defined by this condition.

	unmodifiedSince
	If the corresponding name element of the resourceMappingRules is configured with the name of an attribute of the parent resource, then the lastModifiedTime attribute of the parent resource resource has to be chronologically before the specified value.

If the name element of the resourceMappingRules is configured with a value of “la” then the lastModifiedTime attribute of the corresponding latest <contentInstance> or <timeSeriesInstance> resource has to be chronologically before the specified value defined by this condition.


 
For example, assume: 1) a Hosting CSE hosts a <flexContainer> resource named “door” that has custom attributes named “doorSensor” and “doorLock”; 2) An AE hosts a resource named “d” that is mapped to this <flexContainer> resource and has corresponding attributes named “ds” and “dl” mapped to the “doorSensor” and “doorLock” attributes, respectively. 

To map these resources with one another, a resourceMappingRules attribute is configured in the device1 <flexContainer> resource.  In this example, the doorSensor and doorLock attributes are mapped.  Retargeting is enabled always for the doorLock attribute to allow interaction to take place. The resourceMappingRules attribute is configured as follows using JSON serialization, but XML or CBOR could also be used:

       "resourceMappingRules": [{"name": "doorSensor", "mappedID": "AE01/d/ds"}
{"name": "doorLock", "mappedID": "AE01/d/dl"}]
 
For a similar example that uses <container> and <contentInstance> resources, assume: 1) a Hosting CSE hosts a <container> resource named “doorSensor” and a  <container> resource named “doorLock”; 2) An AE hosts a resource named “d” that has corresponding attributes named “ds” and “dl” mapped to the “doorSensor” and “doorLock” <container> resources, respectively. 

To map the doorSensor <container> resource, a resourceMappingRules attribute is configured in the doorSensor <container> resource to map the AE’s “ds” attribute of the “d” resource to the latest <contentInstance> of the doorSensor <container> resource.  As a result, when a RETRIEVE operation is received by the Hosting CSE that targets doorSensor/la, the Hosting CSE will retarget this RETRIEVE to the AE’s “ds” attribute of the “d” resource.  When a response is received back from the AE, the Hosting CSE will generate a new <contentInstance> resource and store the value of the “ds” attribute within the content attribute of the <contentInstance> resource. The Hosting CSE will also update attributes of the doorSensor <container> resource as a result of creating a new <contentInstance> resource (e.g. lastModifiedTime, currentNrOfInstances, currentByteSize, stateTag, etc.).     

"resourceMappingRules": [{"name": "la", "mappedID": "AE01/d/ds", “retargetCriteria”:[{“operations”:[{“RETRIEVE”}]}]}]

To map the doorLock <container> resource, a resourceMappingRules attribute is configured in the doorLock <container> resource to map the AE’s “dl” attribute of the “d” resource to the latest <contentInstance> of the doorLock <container> resource.  As a result, when an CREATE operation is received by the Hosting CSE that targets doorLock <container> resource, the Hosting CSE will retarget an UPDATE to the AE’s “dl” attribute of the “d” resource.  When a response is received back from the AE, the Hosting CSE will CREATE a new <contentInstance> resource and store the value of the “dl” attribute within the content attribute of the <contentInstance> resource. The Hosting CSE will also update attributes of the doorLock <container> resource as a result of creating a new <contentInstance> resource (e.g. lastModifiedTime, currentNrOfInstances, currentByteSize, stateTag, etc.).       

"resourceMappingRules": [{"name": "la", "mappedID": "AE01/d/dl", “retargetCriteria”:[{“operations”:[{“UPDATE”}]}]}]

[bookmark: _Toc34210426]6.2.4.1.2 Retargeting Procedure based on a New Attribute resourceMappingRules
The procedure for leveraging the new resourceMappingRules attribute to enable retargeting of requests to AE hosted resources is illustrated in Figure 6.2.4.1.2-1 and described in detail below. 




Figure 6.2.4.1.2-1: Retargeting a Request to an AE based on resourceMappingRules


Step 000: An AE is registered to a Hosting CSE, and an <AE> resource is created for the Registree AE. In addition, one or more data sharing resources (e.g. <flexContainer>) are created for the Registree AE on the Hosting CSE.

Step 001: A request is sent to the Hosting CSE to configures the resouceMappingRules for a given resource (e.g. <flexContainer>).  The resouceMappingRules define rules that map to resource(s) hosted by the AE. 


Step 002: : The Hosting CSE checks the privileges defined within the <accessControlPolicy> resources of the targeted resource, to determine whether the request Originator has privilges to UPDATE the resouceMappingRules attribute.  If so, the Hosting CSE configures resouceMappingRules for the targeted resource.  Otherwise, the Hosting CSE rejects the request with an error. 

Step 003: The Hosting CSE returns a response.

Note: The Registree AE may not perform Steps 001-003 itself. Instead, another AE (e.g. a system administrator AE) on behalf of the Registree AE may perform these steps.   

Step 004: An Originator AE (or CSE) sends an oneM2M request (e.g. RETRIEVE or UPDATE) to a given resource that has a resouceMappingRules attribute configured. 

Step 005: The Hosting CSE processes the oneM2M request. The Hosting CSE checks whether it needs to retarget the request to mapped AE resource(s) based on the resourceMappingRules defined in the clause 6.2.4.1.1.  The Hosting CSE will perform the following:

a.  Based on the targeted resource or attribute(s) (e.g. device1 or device1/doorSensor or  device1/doorLock), the Hosting CSE will parse the resourceMappingRules attribute of the targeted resource for each applicable attribute and detect if retargeting the request is required.   This is done by checking if a retargeting rule is defined for each attribute targeted by the request. 

E.g. UPDATE CSE01/AE01/device1/doorLock "OPEN"

b. If retargeting is required, the Hosting CSE determines which Registree AE to retarget request(s) to.  This is done by checking the pointOfAccess information from the <AE> resource associated with the AE-ID configured in the mappedID element(s) of the resourceMappingRules attribute.  The pointOfAccess will provide the protocol binding to use, the IP address or FQDN and the port.   For example,

[bookmark: _Hlk12447795]coap://192.152.25.10:5683
	http://192.152.25.10:80
	mqtt://192.152.25.10:1883
	ws://192.152.25.10:9010

Note: A single oneM2M resource can have attributes that are mapped to more than one resource locally hosted by a Registree AE.  Hence a Hosting CSE may need to issue multiple retargeted requests to Registree AEs for a single request that it receives to a targeted resource.

Note: If a Hosting CSE receives a request that accesses multiple attributes that are mapped to a single AE hosted resource, the Hosting CSE can issue a single retargeted request to the Registree AE which accesses the multiple attributes.

Note: During this step, the Hosting CSE also checks whether the Originator of the request has the proper privileges to retarget requests to the AE.  The Hosting CSE performs this check using the retargetPrivileges defined in the resourceMappingRules and the RETARGET privileges defined in the <accessControlPolicy> resource as defined in clause 6.2.4.2.  

c. Depending on the protocol binding (e.g. CoAP, HTTP or MQTT), the pointOfAccess may provide an optional path or topic space (e.g. “r”).  If an additional path or topic (e.g. “/d/dl”) is present in the mappedID element(s) of the resourceMappingRules attribute, then the Hosting CSE appends this path or topic to any path or topic present in the pointOfAccess (e.g. “r/d/dl”). Based on the applicable protocol, the Hosting CSE configures this path or topic in the following manner.

Table 6.2.4.1.2-1 Method to bind path or topic

	Protocol
	Method to bind path or topic

	CoAP
	Uri-Path header field

	HTTP
	Host header field

	MQTT
	“to” parameter encapsulated within the MQTT request payload

	WebSocket
	“to” parameter encapsulated within a data frame of the WebSocket protocol




d. The Hosting CSE maps the operation of the incoming oneM2M request primitive to a corresponding operation in the retargeted request that it sends to the AE.  This mapping is dependent on the protocol that is used to retarget the request. 

 
Table 6.2.4.1.2-2 Method to bind operation

	oneM2M
	CoAP 
	HTTP
	MQTT
	WebSocket

	RETRIEVE
	GET
	GET
	“op” parameter and value encapsulated within the MQTT request payload
	“op” parameter and value encapsulated within a data frame of the WebSocket protocol

	UPDATE
	PUT 
	PUT
	“op” parameter and value encapsulated within the MQTT request payload
	“op” parameter and value encapsulated within a data frame of the WebSocket protocol



NOTE, in the current document retargeting of RETRIEVE and UPDATE is only supported.

e. If the Hosting CSE supports sending multiple outstanding retargeted requests in parallel to an AE, the Hosting CSE can include a request identifier within the retargeted request to enable the Hosting CSE to properly associate the returned responses with the issued requests.  Based on the applicable protocol, the Hosting CSE binds the request identifier in the following manner.

Table 6.2.4.1.2-3 Method to bind request identifier

	Protocol
	Method to bind request identifier

	CoAP
	oneM2M-RQI header field

	HTTP
	X-M2M-RI header field

	MQTT
	“rqi” parameter is encapsulated within the MQTT request payload

	WebSocket
	“rqi” parameter is encapsulated within a data frame of the WebSocket protocol



f. The Hosting CSE gets the supported serialization format from the corresponding <AE> contentSerialization attribute and uses it to determine which serialization format to use when serializing the payload of the retargeted request that it sends to the Registree AE.

g. If applicable, the Hosting CSE generates the content of the request (e.g. for a UPDATE request).  Based on the resourceMappingRules of each applicable attribute, the Hosting CSE constructs the content consisting of serialized attribute names and values in the serialization format specified by the contentSerialization attribute of the corresponding <AE> resource. Below is a JSON example,

{
"dl": "OPEN"
}

Based on the applicable protocol, the Hosting CSE binds the content in the following manner.

Table 6.2.4.1.2-4 Method to bind content

	Protocol
	content binding

	CoAP
	content is included within the CoAP request payload

	HTTP
	content is included within the HTTP request payload

	MQTT
	“pc” parameter and content value is included within the MQTT request payload

	WebSocket
	“pc” parameter and content value is included within a data frame of the WebSocket protocol



Note: the Hosting CSE does not format the content as a oneM2M Primtive Content parameter (i.e. no "m2m:" root element is included in the serialization).  Instead, the Hosting CSE formats the content to include only a simplified payload consisting of the applicable attributes as specified in the resourceMappingRules and their corresponding values. This reduces complexity and makes interaction with AEs lighter weight.

Step 006: The Hosting CSE sends the retargeted request(s) to the AE. The following example shows a retargeted request to UPDATE the value of a “dl” attribute of a “dA” resource hosted by the AE to a value of “OPEN”.

Table 6.2.4.1.2-5 Example retargeted request

	Protocol
	Example retargeted request

	CoAP
	Method:PUT
Uri-Host: 192.152.25.10
Uri-Port:5683
Uri-Path:dA
oneM2M-RQI:001
Payload:{"dl":"OPEN”}

	HTTP
	Method:PUT
Host: 192.152.25.10:80/dA
X-M2M-RI:001
Payload:{"dl":"OPEN”}

	MQTT
	Host: 192.152.25.10:1883
Payload:{"op":3,"to":"dA","rqi":"001","pc":{"dl":"OPEN”}}

	WebSocket
	Host: 192.152.25.10:9010
Payload:{"op":3,"to":"dA","rqi":"001","pc":{"dl":"OPEN”}}




Step 007: The Registree AE receives and processes the retargeted request. 

Step 008: The Registree AE sends a response back to the Hosting CSE. The following example shows a response for the retargeted UPDATE request.

Table 6.2.4.1.2-6 Example response for a retargeted request

	Protocol
	Example response for a retargeted request

	CoAP
	Code:2.04
oneM2M-RQI:001

	HTTP
	Code:204
X-M2M-RI:001

	MQTT
	Payload:{"rsc":2004,"rqi":"001”}

	WebSocket
	Payload:{"rsc":2004,"rqi":"001”}




Step 009: The Hosting CSE receives the response from the Registree AE and checks the status. If the status indicates a success, the Hosting CSE extracts the content (if present/applicable) from the response payload, parses the attributes and values within the content and based on the resourceMappingRules configures the values of any attributes in the content of the response into the Hosting CSE's locally mapped attributes.  If the status indicates an error, the Hosting CSE includes this error in the oneM2M response primitive that it forms for the Originator AE/CSE. 

Step 010: The Hosting CSE completes processing of the request by returning the oneM2M response primitive to the Originator AE/CSE.

Error Scenarios:
1)  If an Originator of a request targets a resource with resourceMappingRules defined, and the Originator does not have proper privileges to retarget request(s) to the applicable AE, the Hosting CSE will reject the request and return an error to the Originator indicating that it does not have sufficient retargeting privileges to perform the request.

2)  If an Originator of a request targets a resource with resourceMappingRules defined, but the corresponding AE defined in the resourceMappingRules is not reachable by the Hosting CSE, the Hosting CSE will reject the request and return an error to the Originator indicating that the request cannot be processed since the retargeted AE is not reachable.

3) If an Originator of a request targets a resource with resourceMappingRules defined, and the corresponding AE defined in the resourceMappingRules is reachable, but the one or more retargeted request(s) sent by the Hosting CSE to the AE all result in errors being returned to the Hosting CSE, then the Hosting CSE will reject the request and return an error to the Originator.  The Hosting CSE will determine the proper error by evaluating the error(s) returned by the AE and selecting the appropriate error.  The Hosting CSE will not update the resource hosted on the Hosting CSE in this case.

4)  If an Originator of a request targets a resource with resourceMappingRules defined, and the corresponding AE defined in the resourceMappingRules is reachable, and the request from the Originator requires more than one retargeted request be sent to the AE, but a subset of the retargeted requests result in errors and a subset are successful, then the Hosting CSE will process the request in a best effort manner. For this case, the Hosting CSE will update the resource hosted on the Hosting CSE to reflect the successful retargeted request(s) and return an error to the Originator indicating that the request couldn’t be fully processed and it is possible that there may be discrepancies between the state of the resource hosted on the Hosting CSE and the resource(s) hosted by the AE.

[bookmark: _Toc34210427]6.2.4.2 Solution 2: Access Control for Retargeting Requests to an AE
With the exception of the NOTIFY access control privilege, existing oneM2M access control privileges are only applicable to the authorization of entities performing operations on resources hosted by a CSE.  A NOTIFY privilege however is applicable to the authorization of entities issuing notification requests to AEs.  For example, this allows an AE to configure which entities are authorized to send it notification requests.
Clause 6.2.1 of TR-0053 introduces new functionality that enables a Hosting CSE to retarget requests that it receives to AEs to process.  With this new proposal, corresponding enhancements are also needed to the existing oneM2M access control policies to provide the capability to authorize the retargeting of requests to AEs.  For example, adding this capability enables an AE to configure access control policies with privileges that grant entities with the rights to have their requests retargeted to the AE for processing by a Hosting CSE.  
To provide this capability, the accessControlOperations parameter of the privileges attribute of the <accessControlPolicy> resource is extended to support a new RETARGET operation, as shown in Table 6.2.4.2-1.  
For example, an <accessControlPolicy> resource having privileges that include a RETARGET accessControlOperations can be created as a child of an <AE> resource.  When a Hosting CSE receives a request that requires re-targeting towards the AE, the Hosting CSE can first check the accessContolPolicyIDs attribute of the targeted <AE>. If any of the <accessControlPolicy> resource(s) referenced by the accessContolPolicyIDs provide RETARGET privileges to the Originator, the CSE will retarget the request to the AE. Otherwise, the Hosting CSE does not retarget the request and returns an error to the Originator indicating access was denied. 
Table 6.2.4.2-1: accessControlOperations attribute with a new operation “RETARGET”

	Name
	Description

	RETRIEVE
	Privilege to retrieve the content of an addressed resource

	CREATE
	Privilege to create a child resource

	UPDATE
	Privilege to update the content of an addressed resource

	DELETE
	Privilege to delete an addressed resource

	DISCOVER
	Privilege to discover the resource

	NOTIFY
	Privilege to receive a notification

	RETARGET
	Privilege to retarget a request



[bookmark: _Toc34210428]6.2.4.3 Solution 3: Using Subscription/Notification to Retarget RETRIEVE Requests
Figure 6.2.4.3-1 illustrates a retargeting procedure, where a Hosting CSE retargets a RETRIEVE request to a Registree AE using an enhanced subscription/notification mechanism. In this example, the Hosting CSE maintains a given resource, but its representation may be missing or not up-to-date all the time. The original representation of the given resource is kept locally at the Registree AE and it is always up-do-date. An Originator AE or CSE aims to retrieve the latest representation of the given resource.   
    


Figure 6.2.4.3-1: Retargeting a RETRIEVE request to an AE via a Notification Message

Step 000: A Registree AE and an Originator AE first register with the Hosting CSE. The Originator AE then discovers the Registree AE.   The details of these procedures have been specified in oneM2M TS-0001.  
Steps 001a-c: The Registree AE makes a subscription to RETRIEVE operations that target the subscribed-to-resource.  This subscription indicates to the Hosting CSE that the Registree AE supports the capability to receive a notification from the Hosting CSE that it has a received a RETRIEVE request for the subscribed-to-resource.  A Hosting CSE can conditionally send a notification to the Registree AE indicating it has received a RETRIEVE request to the subscribed-to-resource and requires an updated representation of the subscribed-to-resource to process the RETRIEVE request.  For example, the Originator of the RETRIEVE request has specified a Filter Criteria such as modifiedSince that specifies a time value that is more recent that the lastModifiedTime of the current resource representation.      
Editor’s Note: FFS –  It might make sense to limit a subscription to RETRIEVE to a subset of oneM2M resource types (e.g. <flexContainer>, <mgmtObj>, <container>, <timeSeries>, etc. )  
Editor's Note: FFS - Investigate whether there should be restrictions or privileges enforced by a Hosting CSE to limit which entity(s) are allowed to create subscription to RETRIEVE operations on a resource (e.g. creator or owner of a resource) and also whether only a single instance of a subscription to RETRIEVE should be allowed for a given subscribed-to-resource.

Step 002: An Originator AE issues a RETRIEVE request to a given resource that the Registree AE has performed Steps 001a-c on.   The Originator includes a modifiedSince Filter Criteria parameter in the request that specifies a timestamp value.
Step 003: The Hosting CSE receives the request and compares the timestamp value configured in the modifiedSince Filter Criteria parameter of the request against the lastModifiedTime attribute of the subscribed-to-resource and detects that the value of the lastModifiedTime attribute is older than the specified modifiedSince value.  Since there is a subscription to RETRIEVE operations, the Hosting CSE generates a notification message that contains an indication that a RETRIEVE Request was received for the subscribed-to-resource and an updated representation of the resource is requested from the AE.  
Editor’s Note: FFS – Investigate an optimal way within the notification request to indicate to the AE that a RETRIEVE request was received by the Hosting CSE which requires an updated representation of the subscribed-to-process from the AE.   
Step 004: The Hosting CSE sends the notification message to the subscriber of the subscribed-to-resource (i.e. Registree AE).   
Step 005: The Registree AE receives and processes the notification of the RETRIEVE request from the Hosting CSE.  
Step 006: The Registree AE sends a response to the Hosting CSE, which contains the an updated representation of the subscribed-to-resource being retrieved.
Editor’s Note: FFS – Investigate optimal method to structure/encode, within the notification response, an updated representation of the subscribed-to-resource.
Step 007: Upon receiving the response from the Registree AE, the Hosting CSE may store/refresh the representation of the subscribed-to-resource. 
Step 008: The Hosting CSE processes the RETRIEVE request using the updated resource representation and returns RETRIEVE response in Step 006 to the Originator AE.
In order to support the procedure illustrated in Figure 6.2.4.3-1, a new type of notification event is defined for the oneM2M subscription eventNotificationCriteria.  The new event is triggered when an attempt to retrieve a subscribed-to resource (e.g. the latest <contentInstance> of a subscribed-to <container> resource) and the resource is either not present, its creationTime is older than the time specified within the createdAfter Filter Criteria, or its lastModifiedTime is older than the time specified within the modifiedSince Filter Criteria of the retrieve request.  This is shown in Table 6.2.4.3-1 below.
[bookmark: _Ref443732839][bookmark: _Ref443733580]Table 6.2.4.3-1:  New Types of Notification Events

	Condition Tag
	Multiplicity
	Description

	notificationEventType
	0..8
	Type H: Generate an event when a retrieve request is attempted to retrieve a subscribed-to-resource and its creationTime is older than the time specified within the createdAfter Filter Criteria, or its lastModifiedTime is older than the time specified within the modifiedSince Filter Criteria of the retrieve request.  




Editor’s Note: FFS – Whether this new proposed Type H notificationEventType should be harmonized with Type E.
In addition, an enhancement to the format of a notification request can be defined to indicate to a subscriber that a RETRIEVE request targeting the subscribed-to-resource has been received and an updated representation of the subscribed-to-resource is needed from the subscriber for the subscription Hosting CSE to process the request.  Li
Likewise, an enhancement to the format of a notification response can be defined to allow a subscriber to return an updated representation of the subscribed-to-resource to a subscription Hosting CSE such that it can use the representation to update the subscribed-to-resource and process the RETRIEVE request.   
6.3 [bookmark: _Toc34210429]Analysis of oneM2M Subscription & Notification and Potential Requirement 
6.3.1 [bookmark: _Toc34210430]Introduction of oneM2M Subscription & Notification
oneM2M Subscription and Notification (SUB) CSF provides notifications pertaining to a subscription that tracks event changes on a resource. A subscription to a resource is initiated by an AE or a CSE. During an active resource subscription, the Hosting CSE sends a notification regarding a notification event to the notification receiver listed in the notificuationURI attribute of the <subscription> resource.  
The scope of a resource subscription includes tracking changes of attribute(s) and direct child resource(s) of the subscribedto resource. It does not include tracking the change of attribute(s) of the child resource(s). Furthermore, the scope includes tracking operations on attributes and direct child resources, but does not include tracking operations on attributes of child resources. Each subscription may include notification policies that specify which, when, and how notifications are sent. 
The general subscription & notification flow is as follows:
[image: ]
Figure 6.3.1-1: Interactions between subscriber and Notification Receivers


6.3.2 [bookmark: _Toc34210431]Limitations of oneM2M Subscription & Notification

The <subscription> resource includes sub-resources and attributes, the mandatory attribute notificationURI includes the all the notification receiver the Hosting CSE will send notifications to.

Table 6.3.2-1: Attributes of <subscription> resource
	Attributes of <subscription>
	Multiplicity
	RW/
RO/
WO
	Description

	resourceType
	1
	RO
	See clause 9.6.1.3.

	resourceID
	1
	RO
	See clause 9.6.1.3.

	resourceName
	1
	WO
	See clause 9.6.1.3.

	parentID
	1
	RO
	See clause 9.6.1.3.

	expirationTime
	1
	RW
	See clause 9.6.1.3.

	creationTime
	1
	RO
	See clause 9.6.1.3.

	lastModifiedTime
	1
	RO
	See clause 9.6.1.3.

	labels
	0..1 (L)
	RW
	See clause 9.6.1.3.

	accessControlPolicyIDs
	0..1 (L)
	RW
	See clause 9.6.1.3.



	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See clause 9.6.1.3.

	creator
	0..1
	WO
	See clause 9.6.1.3.

	eventNotificationCriteria
	0..1
	RW
	This attribute (notification policy) indicates the event criteria for which a notification is to be generated. When no eventNotificationCriteria attribute is present in a <subscription> resource, the Hosting CSE will trigger notifications for this subscription when any of the attributes of the subscribed-to resource is modified.

	expirationCounter
	0..1
	RW
	This attribute (notification policy) indicates that the subscriber wants to set the life of this subscription to a limit of a maximum number of notifications. When the number of notifications sent reaches the count of this counter, the <subscription> resource will be deleted, regardless of any other policy.

	notificationURI
	1 (L)
	RW
	This attribute will be configured as a list consisting of one or more targets that the Hosting CSE will send notifications to. A target will be formatted as a oneM2M compliant Resource-ID as defined in clause 7.2 or as an identifier compliant with a oneM2M supported protocol binding (e.g. http, coap, mqtt). 
If a target is formatted as a oneM2M compliant Resource-ID, then the target will be formatted as a structured or unstructured CSE-Relative-Resource-ID, SP-Relative-Resource-ID, and/or Absolute-Resource-ID of an <AE> or <CSEBase> resource. A Hosting CSE will use this information to determine proper pointOfAccess, requestReqchability and/or pollingChannel information needed to send a notification to the target. The following is an example.
/CSE0001/AE0001
For a target that is formatted as an identifier compliant with a oneM2M supported protocol binding, the details of this format are defined by the respective oneM2M protocol specification. The following is an example of an HTTP URI compliant with oneM2M HTTP protocol binding.
https://172.25.30.25:7000/notification/handler
For a subscription to a <fanoutpoint> resource, if <subscription> resource in request contains a notificationForwardingURI, then the group hosting CSE will configure the notificationURI of the fanout subscription request with an address specified by the Group Hosting CSE that can be used by the Group Hosting CSE to receive aggregated notifications. 

A notification serialization type may be appended to each notification target configured in this list. The Hosting CSE will serialize notifications and send it to a notification target based on this serialization type indicator. Possible serialization types are defined in the TS-0004 [3] (e.g. XML, JSON or CBOR). If a notification serialization type is not appended to a notification target, a default will apply based on the Hosting CSE local policy. The syntax for appending a serializatino type to a notification target will use the “?” delimiter character as shown in the below examples.
http://mydomain/notificationHandler?ct=json
CSE02/base/ae2?ct=xml




When an event occurs, the hosting CSE will generate the Notifications notifications and send these Notifications notifications to all the Notification notification Receivers receivers in the notificationURI attribute in of the <subscription>.

[image: ]


Figure 6.3.2-1: General flow of Event Notification

In addition, in oneM2M, a subscriber such as an AE has no way to know whether a notification is issued and successfully received by a notification receiver. This is a problem since the subscriber may need to know if an urgent notification has been indeed issued and successfully received by designated notification receivers. Furthermore, notification receivers in oneM2M passively receive notifications from a Hosting CSE, no matter which subscriber the subscription has been made by.

The following limitations of oneM2M subscription & notification is are identified.  
· The notification receivers listed in the notificationURI may have some relationship, for example, some are first class receiver, the others are the second class receiver. When an event occurs, the notification should be firstly sendt to all first class notification receivers. 
· The existing SUB CSF functionality does not provide the subscriber any access to information (e.g. statistics information) about notifications being issued in the past.

6.3.3 [bookmark: _Toc34210432]Potential Requirements
1. The oneM2M system shall support deferred notification for some or  all of the notification receivers. 
2. The oneM2M system shall support sending deferred notifications with a subsequent check that the event notification criteria are still met after the deferral period is complete.(e.g. is met after the specified time frame).
3. The oneM2M system shall support the exposure of information on generated notifications to the subscriber and other entities as needed.
4. The oneM2M system shall support that notification receivers are aware of the subscriber.
6.3.4 [bookmark: _Toc34210433]Potential Solutions
6.3.4.1 [bookmark: _Toc34210434]Solution 1: Deferred Notification
6.3.4.1.1 [bookmark: _Toc34210435]Definition of a new attribute for subscription Resource

Table 6.3.4.1.1-1: A new Attributes of <subscription> resource
	Attributes of <subscription>
	Multiplicity
	RW/
RO/
WO
	Description

	deferredNotification
	0..1
	RW
	This attribute, if set, indicates that notifications will be deferred for a period of time before being sent to the receivers. This attribute contains a list of tuples.  Each tuple in the list contains a value of the deferred period and a deferred notification receiver (notificationURI). The hosting CSE will defer the notification only for the listed receiver for the deferred period, and check whether the event notification criteria are still met after the deferred period. If yes, the hosting CSE will send the deferred notification to the receiver. Otherwise, the deferred notification will not be sent.





6.3.4.1.2 [bookmark: _Toc34210436]Example Procedure for Deferred Notification
 [image: ] 
Figure 6.3.4.1.2-1 Example procedure of the Deferred Notification
Step 1: The subscriber sends the create <subscription> request with notificationURI= Notification Recevier #1 and Notification Recevier #2, the deferredNotification including deferred period and deferred notificationURI, e.g., deferred Period=10s, deferred notificationURI=#2;
Step 2: The hosting CSE creates the <subscription> resource with deferred Period=10s, deferred notificationURI=#2;
Step 3: The hosting CSE sends the create <subscription> response;
Step 4: When the notificationCriteria is met, the hosting CSE sends the notify request to the Notification Recevier #1
Step 5: After the deferral period, the hosting CSE checks if the notificationCriteria are still met
Step 6: If the notificationCriteria are still met, the hosting CSE sends the notification to the Notification Receiver#2

6.3.4.2 [bookmark: _Toc34210437]Solution 2: Notification Recording
6.3.4.2.1 [bookmark: _Toc34210438]Introduction
In this solution, a Hosting CSE is enabled with functionality to record statistics for the notifications that it issues for a given <subscription> resource. The recorded notification statistics can be retrieved to obtain information such as the number of notification requests sent to a given notification receiver and the number of notification responses received back from a notification receiver acknowledging the successful receipt of notifications.  Using this information, entities such as subscribers can determine whether notifications are actually reaching the notification receivers or not. Based on this information, subscribers can better manage their <subscription> resources (e.g. remove notification receivers that are not acknowledging notification requests).    
6.3.4.2.2 [bookmark: _Toc34210439]Notification Recording Procedures
When a subscriber creates or updates a <subscription> resource, the subscriber can request that the Hosting CSE record statistical information for the corresponding notifications generated by the Hosting CSE and that target the specified notification receivers. Such notification recording works as follows:
1. First, the subscriber issues a request to create or update a <subscription> resource.  Within this request, the subscriber indicates the types of notification statistics to be recorded by the Hosting CSE in a new notifStatType attribute of the <subscription> resource; 
1. Second, the Hosting CSE creates or updates the <subscription> resource accordingly.  A new notifStatInfo attribute is also introduced into the <subscription> resource. The notifStatInfo attribute is used by the Hosting CSE to record statistics of the notifications that it generates for the <subscription> resource.  
1. Third, whenever a notification is issued by the Hosting CSE, the Hosting CSE determines whether to record statistics for the notification according to the notifStatType attribute. Notification statistics are stored in the notifStatInfo attribute of the <subscription> resource. 
1. Fourth, various entities (e.g. the subscriber, notification receivers, etc.) can access the statistics stored in the notifStatInfo attribute. The Hosting CSE may employ certain access control policies to authorize which entities have access to the notifStatInfo attribute. For example, the subscriber can access notifStatInfo to determine how many notifications have been issued and successfully received by notification receivers. Leveraging this information, the subscriber may perform certain actions such as updating the notificationURI attribute of the <subscription> resource to remove notification receivers that have not successfully received past notifications such that the Hosting CSE does not send future notifications to these notification receivers.  This can avoid or reduce unnecessary notifications. Furthermore, the subscriber can send a request to update the notifStatType attribute of a <subscription> resource to instruct the Hosting CSE to stop recording notifications or change the type of notification statistics that are recorded. 

Figure 6.3.4.2.2-1 illustrates the procedure for recording and accessing notification statistics. 



Figure 6.3.4.2.2-1: Recording Notification Statistics at a Hosting CSE


Step 1: The Subscriber sends a request to the Hosting CSE to create or update a <subscription> resource. In addition to information like event notification criteria, this message contains a notifStatType attribute. This attribute indicates to the Hosting CSE the type of notification statistics to collect. 
Step 2: The Hosting CSE processes the request and creates or updates the <subscription> resource.  The Hosting CSE may reject the subscriber’s request for recording notification statistics as indicated in the notifStatType attribute, and create a <subscription> resource without this attribute. The Hosting CSE may override the subscriber’s request for recording a specific type of notification statistic as indicated in the notifStatType attribute, and create a <subscription> resource with a different type of notification statistic specified in the notifStatType attribute. If the Subscriber does not configure the notifStatType attribute, the Hosting CSE may configure the notifStatType attribute based on its local policies. 
Step 3: The Hosting CSE sends a response to the Subscriber to inform it of the created/updated <subscription> resource, and if applicable, the value of the notifStatType attribute. 
Step 4: An event occurs which meets the event notification criteria defined in Step 1. 
Step 5: The Hosting CSE issues a notification message and sends it to a notification receiver. 
Step 6: The notification receiver sends back a response. 
Step 7: According to the notifStatType attribute specified in Step 1, the Hosting CSE determines whether to collect notification statistics for the notification message sent in Step 6. 
Step 8: The Subscriber sends a request to retrieve notification statistics stored in the notifStatInfo attribute of the <subscription> resource. 
Step 9: The Hosting CSE sends a response to the Subscriber indicating the value of the notifStatInfo attribute. 



Table 6.3.4.2.2-1: Definition of notifStatType and notifStatInfo attributes of a <subscription> resource 

	Attributes of <subscription> 
	Multiplicity
	RW/
RO/
WO
	Description
	<subscriptionAnnc> Attribute

	notifStatType
	0..1(L)
	RW
	Indicates a list of the types of notification statistics that the Hosting CSE collects for each notification receiver specified by the notificationURI attribute of this <subscription> resource. When this attribute is created or updated with a value other than NULL, the Hosting CSE resets the value of the notifStatInfo attribute and begins collecting notification statistics for each notification generated for this <subscription> resource. When this attribute is updated with a value of NULL, the attribute is deleted and the Hosting CSE stops collecting notification statistics for this <subscription> resource, but does not reset the notifStatInfo attribute.
The allowed types of notification statistics are:
1. Total number of notification requests sent 
1. Total number of notification responses received 
1. Average rate of notification requests sent per hour

	OA

	notifStatInfo
	0..1(L)
	RO
	A list containing notification statistics specified by the notifStatType attribute. For each notification receiver specified by the notificationURI attribute, a separate set of notification statistics is maintained within this list.
For example,
{ notification receiver 1 {stat 1, stat 2, stat 3}, 
  notification receiver 2 {stat 1, stat 2, stat 3} }
	OA




7 [bookmark: _Toc34210440]Conclusions
Editor’s Note: This clause provides a summary of the conclusions drawn during the study


[bookmark: _Toc300919395][bookmark: _Toc487405042][bookmark: _Toc300919400][bookmark: _Toc488238981][bookmark: _Toc488240330][bookmark: _Toc489446030][bookmark: _Toc489446319][bookmark: _Toc34210441]Annexes
Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).
Use the Heading 9 style for the title and the Normal style for the text.
Annex <A>:
Title of annex (style H9)
<Text>
<PAGE BREAK>


[bookmark: _Toc34210442]History
	Publication history

	V.1.1.1
	<dd Mmm yyyy>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	



	Draft history (to be removed on publication)

	V0.0.1
	2018-03-01
	Skeleton of the TR

	V0.1.0
	2018-05-02
	Update to include ARC-2018-0052R02-Limitations_of_oneM2M_Messages which was agreed at ARC34

	V0.2.0
	2018-08-16
	Update to include ARC-2018-0111-Limitations_of_oneM2M_Requests_Targeted_Towards_AEs which was agreed at ARC36

	V0.3.0
	2019-06-05
	Incorporated Agreed CRs:
SDS-2019-0068R02-TR-0053_Retargeting_via_resourceMappingRules
SDS-2019-0069R02-TR-0053_ACP_for_AE_Retargeting
SDS-2019-0070R02-TR-0053_SubNotif_Enhancement_for_Retargeting_Retrieve_Requests

	V0.4.0
	2019-08-12
	Incorporated Agreed CRs:
SDS-2019-0214R02-TR-0053_Primitive_Profile
SDS-2019-0364R01-Updates_to_Retargeting
SDS-2019-0378R02-TR0053-Subscription_&_Notification
SDS-2019-0386R02-Message_Scripting
SDS-2019-0405R02-Deferred_Notification_Potential_Solution

	V0.5.0
	2019-10-23
	Incorporated Agreed CRs:
SDS-2019-0478R01-Message_Scripting_Service_Updates_for_TR-0053

	V0.6.0
	2020-03-04
	Incorporated Agreed CRs:
TR-0053_Notification_Recording_R4



	© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)	Page 11 of 18
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

image1.png

image2.emf
OriginatorReceiver

 

Request message

Response message


Microsoft_Visio_2003-2010_Drawing.vsd
Originator


Receiver


Request message


Response message



image3.emf
Radio Access NeworkUser Equipment(UE1)Server(with an IoT Service Layer for storing and managing data from UEs)User Equipment(UE2)User Equipment(UE3)Cellular Core NetworkCellular access technologies for low-power wide area networks (e.g. 3GPP NB-IoT)Smart Metering Scenario: Each smart meter as a User Equipment (UE) uses low-power wide-area access technologies such as 3GPP Narrow-Band Internet of Things (NB-IoT) to periodically report its meter readings to the Server where an IoT service layer resides for storing and managing meter data from various UEs.     


Microsoft_Visio_Drawing.vsdx
Radio Access Nework
User Equipment
(UE1)
Server

(with an IoT Service Layer for storing and managing data from UEs)
User Equipment
(UE2)
User Equipment
(UE3)
Cellular Core Network
Cellular access technologies for low-power wide area networks (e.g. 3GPP NB-IoT)
Smart Metering Scenario: Each smart meter as a User Equipment (UE) uses low-power wide-area access technologies such as 3GPP Narrow-Band Internet of Things (NB-IoT) to periodically report its meter readings to the Server where an IoT service layer resides for storing and managing meter data from various UEs.



image4.emf
Service LayerApplicationRequest #1 (Request Parameters)Response #1 (Response Parameters)Request #2 (Request Parameters)Request #N (Request Parameters)Response #2 (Response Parameters)Response #N (Response Parameters)


Microsoft_Visio_Drawing1.vsdx
Service Layer
Application

Request #1 (Request Parameters)

Response #1 (Response Parameters)

Request #2 (Request Parameters)


Request #N (Request Parameters)

Response #2 (Response Parameters)
Response #N (Response Parameters)



image5.emf
Service LayerApplication1Request #1 (Request Parameters)Response #1 (Response Parameters)Request #2 (Request Parameters)Request #3 (Request Parameters)Response #2 (Response Parameters)Response #3 (Response Parameters)Application2Application3


Microsoft_Visio_Drawing2.vsdx
Service Layer
Application
1

Request #1 (Request Parameters)

Response #1 (Response Parameters)

Request #2 (Request Parameters)


Request #3 (Request Parameters)

Response #2 (Response Parameters)
Response #3 (Response Parameters)
Application
2
Application
3



image6.emf
<IDList>AE001</IDList><resourceTypes>4<resourceTypes><operations>1<operations><deletions>resourceType resourceName parentID creationTime lastModifiedTime expirationTime stateTag contentSize</deletions><applicability>RESPONSE</applicability>


Microsoft_Visio_Drawing3.vsdx
<IDList>AE001</IDList>
<resourceTypes>4<resourceTypes>
<operations>1<operations>
<deletions>resourceType resourceName parentID creationTime lastModifiedTime expirationTime stateTag contentSize</deletions>
<applicability>RESPONSE</applicability>



image7.emf
Originator (AE or CSE)CSEA Request Message<primitiveProfile> Request Handling ProceduresExisting oneM2M Procedures for Processing a Request<primitiveProfile> Response Handling ProceduresA Response MessageStep 1 –�Find <primitiveProfile> resourcesStep 2 –�Match <primitiveProfile> resourcesStep 3 –�check <primitiveProfile> permissionsStep 4 –�consistency checkStep 5 –�Apply <primitiveProfile>Step 6 –�Apply <primitiveProfile>Existing oneM2M Procedures for Generating a Response


Microsoft_Visio_Drawing4.vsdx
Originator 
(AE or CSE)
CSE
A Request Message
<primitiveProfile> Request Handling Procedures
Existing oneM2M Procedures for 
Processing a Request
<primitiveProfile> Response Handling Procedures
A Response Message
Step 1 – Find <primitiveProfile> resources
Step 2 – Match <primitiveProfile> resources
Step 3 – check <primitiveProfile> permissions
Step 4 – consistency check
Step 5 – Apply <primitiveProfile>
Step 6 – Apply <primitiveProfile>
Existing oneM2M Procedures for 
Generating a Response



image8.emf
ASN-CSEIN-CSEMSCIN-AE1. CREATE a <scriptedRequest> Resource (responseHandling = ³STORE´�2. Create a new resource scriptedRequest013. Response from IN-CSE4. scriptedRequestCriteria Met 5. Scripted Retrieve Request #1 to ASN-CSE6. Response #1 from ASN-CSE9. Scripted Retrieve Request #2 to ASN-CSE10. Response #2 from ASN-CSE7. Store the Response #1 to scriptedRequest01/responsePrimitives12. RETRIEVE scriptedRequest01/responsePrimitives13. Response from IN-CSE(representation of responsePrimitives)11. Store the Response #2 to scriptedRequest01/responsePrimitivesIN-AE creates a <scriptedRequest> resource.IN-CSE triggers to generate scripted requests and send them to ASN-CSE.IN-CSE receives responses from ASN-CSE and stores these responses for IN-AE to retrieve. IN-CSE retrieves responses which are resulted from each scripted request. 8. scriptedRequestCriteria Met 


Microsoft_Visio_Drawing5.vsdx

ASN-CSE
IN-CSE
MSC

IN-AE
1. CREATE a <scriptedRequest> Resource (responseHandling = “STORE”)
2. Create a new resource scriptedRequest01
3. Response from IN-CSE
4. scriptedRequestCriteria Met
5. Scripted Retrieve Request #1 to ASN-CSE
6. Response #1 from ASN-CSE
9. Scripted Retrieve Request #2 to ASN-CSE
10. Response #2 from ASN-CSE
7. Store the Response #1 to scriptedRequest01/responsePrimitives
12. RETRIEVE  scriptedRequest01/responsePrimitives
13. Response from IN-CSE
(representation of responsePrimitives)
11. Store the Response #2 to scriptedRequest01/responsePrimitives



IN-AE creates a <scriptedRequest> resource.
IN-CSE triggers to generate scripted requests and send them to ASN-CSE.

IN-CSE receives responses from ASN-CSE and stores these responses for IN-AE to retrieve.
IN-CSE retrieves responses which are resulted from each scripted request.
8. scriptedRequestCriteria Met



image9.emf
ASN-AEIN-CSEMSCIN-AE1. CREATE a <scriptedRequest> Resource with scriptedRequestCriteria and requestPrimitives attributes to set as: to repeated create <contentInstance> under container01 with the value ³v1´�until date ³d´�for every time ³t´�2. Create a new resource scriptedRequest01 and configures its attributes accordingly as indicated in Step 1.3. Response from IN-CSE5. scriptedRequestCriteria Met. 4. Subscribe to <container01>6. Create a new <contentInstance> with the value ³v1´�under container01Duration:Time t7. Notify8. UPDATE scriptedRequest01 Resource with: to repeated create <contentInstance> under container01 with the value ³v2´�until date ³d´�for every time ³t´�9. scriptedRequestCriteria Met. 10. Create a new <contentInstance> with the value ³v2´�under container01.11. NotifyDuration:Time t


Microsoft_Visio_Drawing6.vsdx

ASN-AE
IN-CSE
MSC

IN-AE
1. CREATE a <scriptedRequest> Resource with scriptedRequestCriteria and requestPrimitives attributes to set as: to repeated create <contentInstance> under container01 with the value “v1” until date “d” for every time “t”)
2. Create a new resource scriptedRequest01 and configures its attributes accordingly as indicated in Step 1.
3. Response from IN-CSE
5. scriptedRequestCriteria Met.
4. Subscribe to <container01>
6. Create a new <contentInstance> with the value “v1” under container01
Duration:
Time t
7. Notify
8. UPDATE scriptedRequest01 Resource with: to repeated create <contentInstance> under container01 with the value “v2” until date “d” for every time “t”)
9. scriptedRequestCriteria Met.
10. Create a new <contentInstance> with the value “v2” under container01.
11. Notify
Duration:
Time t



image10.emf
Create Resource RequestAE1 requests creation of a resourceCreate Resource ResponseCSE responds to resource creation requestAE1Hosting CSEProcess Create RequestProcess Create RequestSubscription RequestAE1 subscribes to resource it createdSubscription ResponseCSE responds to subscription requestProcess Subscription RequestProcess Subscription Request...Process Update RequestProcess Update RequestAE2Update Resource RequestAE2 requests update of resource created by AE1Update ResponseCSE responds to Update RequestNotification RequestCSE send notification request to AE1Notification ResponseAE1 responds to notification requestTrigger NotificationTrigger NotificationProcess Notification RequestProcess Notification Request...Update ResponseCSE responds to Update Request


Microsoft_Visio_2003-2010_Drawing1.vsd

image11.emf
001: Retrieve RequestAE2 request to retrieve resource hosted on AE1AE1 (Target)CSE002: Re-target Retrieve Request002: Re-target Retrieve Request003: Re-targeted Retrieve RequestCSE re-targets retrieve request to AE1AE2 (Originator)005: Re-target Retrieve Response005: Re-target Retrieve Response006: Re-targeted Retrieve ResponseCSE re-targets retrieve response to AE2004: Retrieve ResponseRetrieve response from AE1


Microsoft_Visio_2003-2010_Drawing2.vsd

image12.emf
Create Resource RequestAE1 requests creation of a mirrored resourceCreate Resource ResponseCSE responds to resource creation requestAE1Hosting CSEUpdate RequestAE1 updates mirrored resourceUpdate ResponseCSE responds to update requestAE2007: Retrieve RequestAE2 retrieves AE1's mirrored resource009: Retrieve ResponseCSE responds to Retrieve RequestUpdate RequestAE1 updates mirrored resourceUpdate ResponseCSE responds to update requestUpdate RequestAE1 updates mirrored resourceUpdate ResponseCSE responds to update requestUpdate RequestAE1 updates mirrored resourceUpdate ResponseCSE responds to update requestUpdate RequestAE1 updates mirrored resourceUpdate ResponseCSE responds to update requestUpdate RequestAE1 updates mirrored resourceUpdate ResponseCSE responds to update request


Microsoft_Visio_2003-2010_Drawing3.vsd

image13.emf
Create Resource RequestAE1 requests creation of a resourceCreate Resource ResponseCSE responds to resource creation requestAE1Hosting CSEProcess Create RequestProcess Create RequestSubscription RequestAE1 subscribes to resource it createdSubscription ResponseCSE responds to subscription requestProcess Subscription RequestProcess Subscription Request...Process Retrieve RequestProcess Retrieve RequestAE2RETRIEVE Resource RequestAE2 retrieves resource mirrored by AE1Notification RequestCSE send notification request to AE1Notification ResponseAE1 responds to notification requestTrigger NotificationTrigger NotificationProcess Notification RequestProcess Notification Request...Retrieve ResponseCSE responds to retrieve requestUpdate Resource RequestAE1 requests update of a resourceUpdate Resource ResponseCSE responds to resource update requestProcess Update RequestProcess Update Request


Microsoft_Visio_2003-2010_Drawing4.vsd

image14.emf
attribute-1attribute-2attribute-3<Rsrc-1>(e.g. <flexContainer>)resourceMappingRules<childRsrc-1><childRsrc-2><localRsrc-1><localRsrc-2><localRsrc-3><localRsrc-4><localRsrc-5>RootAE (e.g. A Sensor/Actuator>Hosting CSE           (e.g. A Gateway/Server)Mapping Rule ExamplesMappingRule-1: attrbiute-1 maps to <localRsrc-1>MappingRule-2: attrbiute-2 maps to <localRsrc-2 >MappingRule-3: attrbiute-3 maps to <localRsrc-3>MappingRule-4: <childRsrc-1> maps to <localRsrc-4>MappingRule-5: attribute-21 maps to <localRsrc-5>MappingRule-1MappingRule-2MappingRule-3MappingRule-4MappingRule-5<AE>attribute-21


Microsoft_Visio_Drawing7.vsdx
attribute-1
attribute-2
attribute-3
<Rsrc-1>
(e.g. <flexContainer>)
resourceMappingRules
<childRsrc-1>
<childRsrc-2>
<localRsrc-1>
<localRsrc-2>
<localRsrc-3>
<localRsrc-4>
<localRsrc-5>
Root
AE  (e.g. A Sensor/Actuator>
Hosting CSE            (e.g. A Gateway/Server)

Mapping Rule Examples

MappingRule-1: attrbiute-1 maps to <localRsrc-1>
MappingRule-2: attrbiute-2 maps to <localRsrc-2 >
MappingRule-3: attrbiute-3 maps to <localRsrc-3>
MappingRule-4: <childRsrc-1> maps to <localRsrc-4>
MappingRule-5: attribute-21 maps to <localRsrc-5>
MappingRule-1
MappingRule-2
MappingRule-3
MappingRule-4
MappingRule-5
<AE>
attribute-21



image15.emf
Registree AEHosting CSEOriginator AE/CSE001: Configure resourceMappingRules to a given resource000: Service Layer Security, Registration and Discovery Procedures002: Add resourceMappingRules to the given resource003: Response004: oneM2M Request (e.g. RETRIEVE or UPDATE )005: Determine whether to retarget request based on resourceMappingRules of the given resource006: Retargeted Request (e.g. GET or PUT)007: Process the Retargeted Request008: Response009: Process the Response010: oneM2M Response(e.g.  RETRIEVE or UPDATE)Note: If the Hosting CSE decides to not retarget the Request, Steps 006-009 are not required. 


Microsoft_Visio_Drawing8.vsdx
Registree  AE
Hosting CSE
Originator  AE/CSE
001: Configure resourceMappingRules to  a given resource
000: Service Layer Security, Registration and Discovery Procedures
002: Add resourceMappingRules to  the given resource
003: Response
004: oneM2M Request 
(e.g. RETRIEVE or UPDATE )
005: Determine whether to retarget request based on resourceMappingRules of the given resource
006: Retargeted Request (e.g. GET or PUT)
007: Process the Retargeted Request
008: Response
009: Process the Response
010: oneM2M Response
(e.g.  RETRIEVE or UPDATE)

Note: If the Hosting CSE decides to not retarget the Request, Steps 006-009 are not required.



image16.emf
Hosting CSERegistree AE002: RETRIEVE Request (to = URI of the given resource)001a: Subscribe to events of ͞Retrieving a given resource͟001b : Create the subscription.001c: Response003: Generate a notification message that contains the RETRIEVE Request. Send the notification message to the Subscriber of the given resource (i.e. Registree AE) 008: Response(Content = Representation of the given resource)000: Service Layer Security, Registration and Discovery Procedures004: Notification Message(Content = RETRIEVE Request)006: Response(Content = Representation of the given resource)007: Store the representation of the given resource. 005: Process RETRIEVE RequestOriginator AEs/CSEsSubscribe to ͞RETRIEVE͟�Operations on a Given ResourceRetarget a RETRIEVE Request via a Notification Message 


Microsoft_Visio_Drawing9.vsdx

Hosting CSE
Registree AE
002: RETRIEVE Request 
(to = URI of the given resource)
001a: Subscribe to events of  “Retrieving a given resource”
001b : Create the subscription.
001c: Response
003: Generate a notification message that contains the RETRIEVE Request. Send the notification message to the Subscriber of the given resource (i.e. Registree AE)
008: Response
(Content = Representation of the given resource)
000: Service Layer Security, Registration and Discovery Procedures
004: Notification Message
(Content = RETRIEVE Request)
006: Response
(Content = Representation of the given resource)
007: Store the representation of the given resource.
005: Process RETRIEVE Request
Originator AEs/CSEs
Subscribe to “RETRIEVE” Operations on a Given Resource


Retarget a RETRIEVE Request via a Notification Message



image17.emf
SubscriberHost CSENotificationReceiver 1NotificationReceiver 2Subscribe RequestCreate <subscription>, notification target include Receiver 1&2Notification RequestNotification ResponseEvent occurSubscribe ResponseNotification RequestNotification ResponseNotificationReceiver n… …Notification RequestNotification Response


image18.emf
Notification Receiver 1event1event2eventN… …Notification Receiver 2Notification Receiver N… …


image19.emf



Subscriber Hosting CSE Notification
Receiver #1



Notification
Receiver #2



create <subscription> request
deferredNotification including deferred
period and deferred notificationURI



create <subscription> with
deferred Period=10s,



deferred notificationURI=#2
create <subscription> response



If notificationCriteria are
met, send notification to	



Receiver	#1
notify request



notify response



deferred period is complete
and check if the



notificationCriteria are still met
notify request



notify response










Subscriber HostingCSE

Notification

Receiver#1

Notification

Receiver#2

create<subscription>request

deferredNotificationincludingdeferred

periodanddeferrednotificationURI

create<subscription>with

deferredPeriod=10s,

deferrednotificationURI=#2

create<subscription>response

IfnotificationCriteriaare

met,sendnotificationto	

Receiver	#1

notifyrequest

notifyresponse

deferredperiodiscomplete

andcheckifthe

notificationCriteriaarestillmet

notifyrequest

notifyresponse


image20.emf
Subscriber(e.g. An AE)Hosting CSENotification Receiver1. Subscription Create/Update Request (notifStatType)2. Create/Update a <subscription> resource with two new attributes: notifStatType and notifStatInfo3. Response4. An event occurs5. Notification6. Response7. (Re)Calculate Notification Statistics (i.e., update notifStatInfo attribute of the <subscription> resource)8. Retrieve notifStatInfo attribute9. Response


Microsoft_Visio_Drawing10.vsdx
Subscriber
(e.g. An AE)
Hosting CSE
Notification Receiver
1. Subscription Create/Update Request (notifStatType)
2. Create/Update a <subscription> resource with two new attributes: notifStatType and notifStatInfo
3. Response
4. An event occurs
5. Notification
6. Response
7. (Re)Calculate Notification Statistics 
(i.e., update notifStatInfo attribute of the <subscription> resource)
8. Retrieve notifStatInfo attribute
9. Response



